
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Date: June 10, 2025

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Logan Calder
Grant Johnson
John Alvarado
Jack Landers

ENTITLED

EMT Vision

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING
BACHELOR OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

Thesis Advisor [Dr. Krishna Ramamoorthy]

Department Chair [Dr. Silvia Figueira]

Department Chair [Dr. Shoba Krishnan]

EMT Vision

by

Logan Calder
Grant Johnson
John Alvarado
Jack Landers

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Electrical and Computer Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 10, 2025

EMT Vision

Logan Calder
Grant Johnson
John Alvarado
Jack Landers

Department of Computer Science and Engineering
Department of Electrical and Computer Engineering

Santa Clara University
June 10, 2025

ABSTRACT

Augmented Reality (AR) has demonstrated considerable promise for future mobile technologies, offering the ability
to overlay crucial information within a user’s vision while they can still maintain awareness of the surrounding envi-
ronment. Similarly, Artificial Intelligence (AI) is an increasingly influential technology with significant potential to
revolutionize the medical field. Its ability to rapidly learn and adapt to specific tasks makes it particularly promising
for supporting paramedics during emergency calls. AI can efficiently analyze real-time data and present it in a concise,
actionable format, enhancing decision making in critical situations.

Given the potential of these technologies, we have developed a smart AR headset designed to leverage AI for
the benefit of first responders. This innovative device transcribes and analyzes real-time dialogue between patients
and paramedics, extracting and displaying key information. This allows paramedics to review essential details dur-
ing patient care and when completing necessary documentation, ultimately improving the quality and efficiency of
emergency medical services. Furthermore, our headset is capable of providing 3D holographic visuals that display
procedures and checklists for patient treatment, as well as using cloud computing algorithms that interpret conversa-
tions to automate the collection of patient data for scenario reports.

Table of Contents

1 Introduction 1
1.1 Use Cases . 2
1.2 Problem Statement . 3
1.3 Background . 3

1.3.1 Inspiration . 3
1.3.2 Related Work . 4
1.3.3 Technical Research . 5

1.4 Sequence and State Diagrams . 6
1.5 Objectives . 7
1.6 Our approach . 7

2 Requirements 10
2.1 Functional requirements . 10
2.2 Nonfunctional requirements . 12

3 User Research 14
3.1 Methods . 14
3.2 Stakeholder Needs . 15
3.3 Paramedics Experiences . 16
3.4 Current Tools . 17
3.5 User Stories . 18
3.6 Ride-along Immersion . 19

4 Design and Rationale 20
4.1 Overall Design . 20
4.2 Headset Screenshots . 21
4.3 Website Screenshots . 24
4.4 Protocol and Procedure Display . 25
4.5 Audio Recording and Analysis . 25
4.6 Database . 26
4.7 User Interface . 27
4.8 Patient Dashboard . 28

5 Technologies 29
5.1 System Components . 29
5.2 Hardware . 29

5.2.1 Microsoft Hololens 2 . 29
5.3 Software & Digital Technologies . 30

5.3.1 Unity . 30
5.3.2 MRTK3 . 32
5.3.3 UWP . 32
5.3.4 Visual Studio . 32
5.3.5 Microsoft Azure . 33

iv

5.3.6 OpenAI API . 33
5.3.7 Supabase . 34
5.3.8 NextJS . 34
5.3.9 Vercel . 35

6 Software Design 36
6.1 Architecture . 36
6.2 High-Level Architecture . 36
6.3 Low-Level Architecture . 37

6.3.1 Patient Dashboard . 37
6.3.2 HoloLens 2 . 37

7 Risk Analysis 39

8 Testing 41
8.1 Beta Testing . 41
8.2 Prototype Testing . 41

8.2.1 Prototype Results . 42
8.3 Simulation Testing . 42

8.3.1 Test Case A: Multiple People Speaking . 42
8.3.2 Test Case B: Noisy/Loud Environment . 43
8.3.3 Test Case C: Incorrect Data Recovery . 43

8.4 Theoretical Field Testing . 44

9 Schedule 46
9.1 Overview . 46
9.2 Gantt Chart Overview . 46
9.3 Setbacks . 47

10 Constraints and Standards 48
10.1 Constraints . 48

10.1.1 HIPAA . 48
10.1.2 Hololens 2 Technological Limitations . 48
10.1.3 AI Bias & Fairness . 49
10.1.4 Accessibility (WCAG 2.1, Section 508) . 49
10.1.5 Data Security & Encryption . 49

10.2 Standards . 50
10.2.1 IEEE Standards . 50
10.2.2 ISO Standards . 50
10.2.3 HIPAA . 51

11 Societal Issues 52
11.1 Ethical . 52

11.1.1 Patient Privacy and Confidentiality . 52
11.1.2 Informed Consent . 52
11.1.3 Ethical Responsibility of Data Usage . 53

11.2 Social . 53
11.2.1 Trust Between Patients and Paramedics . 53
11.2.2 Workforce Acceptance and Adaptation . 53

11.3 Political . 54
11.3.1 Legislative Barriers . 54
11.3.2 Potential for Legal Challenges . 54

11.4 Economic . 54
11.4.1 Cost of Implementation . 54
11.4.2 Financial Sustainability . 55

v

11.4.3 Potential for Cost Savings . 55
11.5 Health and Safety . 55

11.5.1 Impact on Paramedic Performance . 55
11.5.2 Enhanced Documentation for Patient Safety . 55

11.6 Usability . 55
11.6.1 Intuitive Interface . 56
11.6.2 Minimal Training Requirement . 56
11.6.3 Customization . 56
11.6.4 Hardware . 56

11.7 Compassion . 56

12 Final Product 57
12.1 Differences Between Prototype and Finalized Project . 57

12.1.1 Technological and Design Differences . 57
12.1.2 Feature Differences . 58

12.2 User Guide . 58
12.2.1 Headset Manual . 58
12.2.2 Patient Portal Manual . 60

12.3 Next Steps . 60
12.3.1 Health Department Approval . 60
12.3.2 Distributable Hardware . 61

12.4 Future Features . 61
12.4.1 Elevator Rescue . 62
12.4.2 Apartment Mapping . 62
12.4.3 Equipment Checklist . 62
12.4.4 Diagnosis . 62
12.4.5 Hazard Detection . 63
12.4.6 Missing Field Errors . 63
12.4.7 Government ID Scanner . 63
12.4.8 Hospital Chart . 63
12.4.9 Medication Guidance Interface . 63

13 Conclusion 65

14 Acknowledgments 67

15 References 68

A Code Files 71
A.1 auth callback.ts . 71
A.2 callback.ts . 71
A.3 dashboard.tsx . 72
A.4 layout.tsx . 76
A.5 login.tsx . 77
A.6 patient.ts . 78
A.7 patient.tsx . 78
A.8 stats.ts . 94
A.9 globals.css . 94
A.10 styles.css . 96
A.11 ActivePatient.cs . 97
A.12 AudioFileLogger.cs . 97
A.13 ClearText.cs . 109
A.14 DynamicChecklist.cs . 109
A.15 FetchAPILoop.cs . 112
A.16 FlashDot.cs . 113

vi

A.17 IMixedRealityPointerHandler.cs . 114
A.18 JsonRender.cs . 114
A.19 MenuManager.cs . 115
A.20 NewPatient.cs . 116
A.21 PatientScroll.cs . 116
A.22 PatientsRender.cs . 117
A.23 SlateFollower.cs . 119
A.24 SlateResetButton.cs . 120
A.25 SlateVisibilityToggle.cs . 121
A.26 SupabaseAPI.cs . 121
A.27 TextResize.cs . 122
A.28 TextToggle.cs . 123
A.29 ToggleGameObjects.cs . 124

B Unity Structure 125
B.1 Checklist Menu . 125

B.1.1 Main Menu . 125
B.1.2 Protocols . 127

vii

List of Figures

1.1 Headset Usage Diagram . 2
1.2 Audio Recording Sequence Diagram . 6
1.3 Audio Recording State Diagram . 7

3.1 ImageTrend on County Tablet . 15
3.2 ePCR . 15
3.3 Ambulance Interior . 17
3.4 Engine Interior . 17
3.5 Jack Landers in Protective Gear . 19

4.1 The full User Interface (UI) visible on the headset. 21
4.2 The patient data display, visible per each patient. 21
4.3 The patient list visible on the UI. 22
4.4 Our protocol and procedure display for Santa Clara County standards. 23
4.5 Website commercial landing page. 24
4.6 Website interactive Dashboard, showing overall statistics and important information. 24
4.7 Per-Patient information display, showcasing ePCR data for that individual. 24
4.8 High Level Diagram . 28

6.1 Low-Level Patient Dashboard Architecture Diagram . 37
6.2 High-Level Headset Flowchart Diagram . 38

8.1 Accuracy score for Test Case A: Multiple People Speaking . 43
8.2 Accuracy score for Test Case B: Noisy/Loud Environment . 44
8.3 Accuracy score for Test Case C: Incorrect Data Recovery . 45

12.1 View of the Protocol Menu in Unity. The user can navigate through the protocols and their respective
PDFs using the labeled buttons on the left. 59

12.2 View of the primary menu in Unity. The left panel contains buttons for switching between patients
while the center panel is where the information from the recorded conversation with a patient will appear. 59

12.3 The main dashboard of the Patient Portal . 60

B.1 CHECKLIST MENU Game Object . 125
B.2 MAIN MENU Game Object . 125
B.3 MAIN MENU Button List . 126
B.4 MAIN MENU Button Inspector View . 126
B.5 PROTOCOL Game Object . 127

viii

Chapter 1

Introduction

Paramedics, EMTs, and other first responders work in a high-stress environment surrounded by panic, danger, and an

overwhelming influx of information. To prepare for these scenarios, paramedics are expected to memorize hundreds of

procedures and recall the correct instructions as clockwork. Even a simple error or hesitation risks the life of a patient,

and as a result, the job is incredibly physically and mentally demanding. A review of five studies found ’overall

burnout’ among paramedics to be between 16 percent to 56 percent [22]. Also, paramedics were found to struggle to

manage their responsibilities due to the demands of working in high-pressure, unpredictable conditions and the sudden

transitions from calm situations to emergencies [1]. For example, on a call with a patient with chest pain, a paramedic

must retain crucial information about the patient, assess injuries, follow strict procedures perfectly, and administer

intervention. These scenarios are further complicated with the need for accurate retention of all relevant procedures

taken and communication received by the patient to ensure seamless turnover between paramedics and hospitals. The

vast concurring responsibilities present an opportunity to improve the quality of life of such essential services.

AR (Augmented Reality) is a headset worn by a user to merge a screen with reality, resulting in a view of a 3D

hologram. The inclusion of AR in fast-paced environments is apparent, utilizing the benefits of easily-accessible infor-

mation from a tablet without restricting the users’ hands or distracting the user’s gaze from their environment. As well

as this, we discovered AI, artificial intelligence, could implement streamlines to communication. AI is a technology

that enables computers to simulate tasks and create interpretations of data that are typically done by humans. With

paramedics, AI provides opportunities to summarize, specify, and organize conversations to automatically recall crit-

ical information during emergency situations. By including AR technology in conjunction with AI, we present EMT

Vision, an application that offers solutions to support paramedics with checklist management, speech transcription and

analysis, optical character recognition, and more.

1

1.1 Use Cases

A few motivations for our project, EMT Vision, are as follows:

1. To record audio in noisy and loud environments, while still maintaining the capability of analyzing the data.

2. To transform audio data into JSON (JavaScript Object Notation); concise information that is easily digestible

and comprehensible.

3. To store patient information securely, permitting the retrieval of on-call data for improved patient care later on.

4. To display a summary of patient data as an overlay on the AR headset.

5. To effectively analyze patterns in bulk sections of patient data, using cloud computing to determine potential

risks and conditions a patient may have.

6. To offer an easy, hands-free method of visually contacting off-site doctors, showing them recorded patient data

obtained on scene.

7. To provide an interactive checklist for tracking patient care progress.

Figure 1.1: Diagram showing usage of the headset as well as the architecture of information recording and display.

2

1.2 Problem Statement

Paramedics work in a high-stress, demanding job that necessitates efficiency and reliability to save lives. During

or after a call, paramedics are expected to complete a prehospital care record (PCR) form, which contains relevant

patient data such as vital signs, personal background, and initial patient assessment. This information is relayed to the

hospital to maintain continuity of treatment, so the form’s accuracy is imperative [23]. However, these professionals

are ultimately human and, given the circumstances, can be imperfect. In fact, a study comparing EMS documentation

to body-worn cameras found an average of 11.7 errors, demonstrating the need for equipment to assist in recollection

and documentation [14]. Additionally, the cognitive attention needed to recall this information and actively complete

it reduces the time spent caring for the patient. Existing systems function on tablets that require two hands and

undivided attention to operate, which tends to require an additional responder to perform separately to patient care.

Overall, paramedics have lacked recent and universally-accessible technological advancements to assist with everyday

tasks. Given this, we present EMT Vision an AR and AI-based technology that offers solutions to support paramedics

in their field of work. This device presents solutions in a newly developed form.

1.3 Background

Before starting our project, we researched various other papers in related areas. From these sources, we gained

inspiration and developed our understanding of other projects in the field and also considered what technologies and

solutions could be applied.

1.3.1 Inspiration

In our research, we found examples of many cases where virtual reality simulations have been used for improved

emergency response. Virtual simulations can allow firefighters to develop their skills further at a lower cost and at

greater convenience to other alternative training scenarios. It is considered, because in educational settings, VR has

been proven to improve skills that can be translated into the real world for children.

In his paper, Philip Braun proved that the use of virtual reality is incredibly effective for training firefighters to

prepare for communication in a high stress environment. They prototyped an application to practice in virtual disaster

management tasks and used motion capture to confirm that they were able to improve trainee firefighter performance.

[3]

As well as this, Andrzej Grabowski showed a qualitative analysis that with his virtual training system, firefighters

training improved. He concluded that more than 90% of users found it to be helpful, and intended to use the application

again. This study used haptic feedback on top of this, so that trainees also had further simulation complexity of a virtual

world than simply visual stimulation, which Gabrowski explains is the study’s greatest success. [12]

3

In ‘The Future of Smart Firefighting’, Raveendran evaluates extended reality as it could be used in the field by

firefighters. He highlights the efficacy of using artificial intelligence for real time assistance, on top of having a

360 degree perspective of the scene. However, he also outlines the barriers to development. This includes the high

standards for training data that is sensitive to acquire, and the expense of making the product durable for firefighting

scenarios. It is for this reason that we pivoted to looking for more achievable ways to help our local firefighters using

augmented reality, while still introducing something new to virtual reality simulations. [21]

Ms. Cooper wrote an article in the Texas State University magazine that describes the plummeting costs of virtual

and augmented reality. In this, she proposes that VR and AR training could also be used for medical purposes.

Primarily, she suggests that the expense of training materials for medics working in ambulances significantly outweighs

the affordability of virtually simulating the equipment. [6]

With this, we began to research how augmented reality is used in the healthcare industry and came across an

article that describes the surmounting potential of doing so. The author explains the improvements that have been

made by using artificial intelligence (AI) technology for medical imaging, surgery assistance, and symptom detection.

Furthermore, they state that AR has also been used effectively for physical therapy, dental treatment, and supporting

healthy routines like exercise. This is where we identified that there was a gap in the field where first responders in

ambulances could also benefit from new innovations. [17]

1.3.2 Related Work

In preparation, we identified prior research papers that have aimed to develop a similar solution. It was important for

us to understand where other projects succeeded, and what limitations they faced, which held them back from making

a scalable distributed system.

How AR Glasses Can Help First Responders Save Lives, by Sasha Brodsky, outlines a similar product on the

market. [4] It includes thermal vision, access to patient records, voice/hand control, building layouts, and more. It is

also built on a custom headset. The device allows very similar info display features as our project with more access to

patient data than is within our scope, and even has furthrer improvements, but it lacks our use of AI and sensors that

could help our headset stand out. An article on AR in healthcare, suggests machine learning (ML) and AR can be used

to display real-time patient information onto headsets for medical workers to view, as well as suggested treatments

with assessed injury. [10] Another article, by Kelly Peng, also emphasizes the benefits of using augmented reality (AR)

technology in the training of Emergency Medical Services (EMS) technicians and paramedics. [20] AR technology

provides a safe and realistic training environment by overlaying images, videos, and 3D models onto the real world in

real time. By providing a safe and realistic training environment, AR technology not only improves skill acquisition

but also enhances confidence and performance outcomes. Additionally, the article emphasizes the flexibility, cost-

effectiveness, and time-saving benefits of AR-based training. We found an example where Japanese EMTs use AR

4

glasses while transporting patients to actively aid in treating them and communicate in real-time with doctors at the

hospital. [7] The EMTs primarily used the goggles for this communication with the hospital, enabling them to ask

questions, and ensure a smooth transition from treatment in the ambulance to treatment at the destination healthcare

facility. While this aligns with some of our goals for communicating events more effectively, it uses some integrations

that are outside of our reach, but again does not implement AI as effectively as we aim to.

1.3.3 Technical Research

To best understand other techniques and applications that could be combined with artificial intelligence assistance and

augmented reality, we reviewed prior technical research of the field. While these were too complex to integrate for our

project, they were worth researching to fully understand the state of the field and its potential.

The Respond-A project approach found that when combining augmented reality and AI, that first responders could

benefit from resource allocation data being visualized, as well as information from drones interpreting the scene.

While this system was not thoroughly tested, it was proposed that multiple teams and units could collaborate with the

combinations of these emerging technologies. [19]

To prepare to use object detection, we researched Voxel 51 as an open source machine learning application for

creating computer vision models. Built in evaluation functions could help us determine which models would best

suit our program. This depends on the type of data that we aim to extract from our imaging, and the levels of detail

that it needs to interpret. There were potential limitations to implementing this application on a headset as it would

be overly demanding on our hardware, the Hololens 2. Voxel also relies on only imaging from video and would not

utilize other sensors which would be ineffective in low visibility conditions. However because it is open source and

well documented it had potential for helping us develop any object detection features. [25]

We also considered ways in which we could source pre-built models for our use case. Researchers in Maryland

designed a computer vision model that could identify details from patients driver’s licenses and vital monitor screens

within an ambulance and record this data for the paramedic’s convenience. These researchers failed to implement

their algorithm on hardware. They had aimed to use smart glasses integrated with an app but settled for connecting

the video feed to a zoom call that would interpret the data from an offsite device. This would cause issues where

network connectivity is limited. On the other hand, if we could overcome this bottleneck, we could have a high

confidence identification system. [8] In the end, we relied on a cloud based AI approach, but used Azure cloud

services alternatively for their

Furthermore, a journal from the 2022 International Conference on Decision Aid Sciences and Applications (DASA)

outlined the training of an object detection algorithm for detecting emergency vehicles using both audio and video.

This could be used for other object detection features in our ambulance based application. In addition, this detection

system can be easily replicated and they express ideas for how it could be applied in a variety of ways. It is particularly

5

accurate and outlines an effective methodology for developing a model. [15]

Researchers at Stanford Medicine found that AR is capable of digitally displaying multiple screens that would

otherwise be put elsewhere, making patient vital data such as electrocardiograms (ECG) much more accessible. We

found that we could potentially apply these same concepts to our goggles, where we could ideally have an EKG

reading of the patient projected to the goggles, as well as their patient data. [2]

1.4 Sequence and State Diagrams

The diagrams below display the broad process of audio recording, AI-based summarization, and the visual display of

information obtained. The summarized architecture for the running HoloLens software is provided in the following

sequence. Firstly, whilst idle, the headset will not record nor display data. During this time, the user can adjust the

information panels or search through department procedures. The application will wait for the user to activate ”start

recording”, which will initiate the repeated acquisition of data as audio files. These files are converted to text, removed

of identifying characteristics, and sent to the AI to analyze. The AI outputs the summarized dialogue as a JSON file

and updates the current display text with the requested relevant information. If prompted, the headset will visualize

patient data in subcategories previously laid out by Santa Clara County EMS, enabling the user to easily fill out the

required patient documentation prior to arriving at the hospital.

Figure 1.2: Sequence diagram displaying the process of audio recording to heads up display.

6

Figure 1.3: State diagram displaying the process of audio recording to heads up display.

1.5 Objectives

To efficiently design, develop, and improve our design, we constructed a series of objectives that we desired to im-

plement in order. Continual development was also supplemented with multiple meetings with the Santa Clara County

Emergency Department, obtaining valuable insight and suggestions for what features should be prioritized, designed,

and refined.

1. Integrate an accurate voice recording system, capable of identifying words in a loud and chaotic environment.

2. Use voice-to-text software that may translate any dialect or language into easy-to-read, concise patient data

visible on the Heads Up Display (HUD).

3. Efficiently implement a secure and confidential patient information database, capable of recalling data from calls

earlier in the day.

4. Migrate the pre-existing Santa Clara County EMS App and its respective checklists, procedures, and protocols

into the headset, permitting paramedics to keep track of their progress treating a patient. This was a notable

feature specifically requested by the paramedics in Santa Clara County.

5. Engineer a versatile and lightweight battery pack capable of retaining battery life for an extended call.

6. Develop a live audio feed for calling medical professionals on scene while sharing all recorded data.

1.6 Our approach

Given the extensive range of features we initially aimed to implement on the Microsoft HoloLens, a carefully planned

approach was necessary to ensure efficient development, thorough debugging, and effective testing. Key features of

7

our project included interactive checkboxes and protocol lists, live audio recording and transcription, a lightweight

and unobtrusive battery pack, and a calling functionality to facilitate communication with medical professionals.

Given the complexity and scale of our project, which includes numerous large-scale features operating simulta-

neously, a structured and methodical approach was essential to ensure efficient development, debugging, and testing

over the months-long timeline. Our process began with outlining the project’s initial layout and creating a detailed

roadmap. This roadmap included clearly defined milestones, deadlines, testing phases, and the foundational design of

the application’s architecture. To manage the scope of development effectively, we prioritized the implementation of

the audio recording and transcription software, followed by the checklist and protocol display. Once these core func-

tionalities were completed, we initiated simulation testing in collaboration with the Santa Clara County paramedics to

refine the design based on real-world feedback.

Recognizing that EMT Vision was intended to be utilized by Santa Clara County paramedics during actual emer-

gency calls, we engaged in recurring consultations with paramedics from the department. These sessions provided

a valuable platform to gather diverse perspectives and professional insights from EMTs. Through these discussions,

it became evident that opinions within the department were divided regarding the role and potential of augmented

reality (AR) in their field. Some paramedics viewed AR as a natural and inevitable evolution in emergency response,

advocating for EMT Vision to streamline and automate as many on-call responsibilities as possible. Conversely, others

expressed concerns that such technology might be viewed as untrustworthy by both paramedics and patients, poten-

tially causing distractions and raising fears of job displacement or undermining professional judgment. This spectrum

of viewpoints significantly shaped the direction of our project. Our goal evolved to focus on creating a solution that

complements the work of paramedics rather than replacing or obstructing it. EMT Vision was designed to assist with

background and supportive tasks, minimizing cognitive overload and allowing paramedics to concentrate fully on their

critical responsibilities. Features such as the live chat with medical professionals and the interactive checklist display

emerged directly from these discussions as key priorities, aligning with the feedback we received from Santa Clara

County EMS teams. Ultimately, the insights and feedback gathered during these consultations played a pivotal role in

shaping EMT Vision’s development. By actively incorporating the input of the very professionals who would rely on

the technology, we ensured that our device serves as an effective, desirable, and unobtrusive tool that enhances, rather

than disrupts, the essential work of paramedics.

Development of the headset was conducted using Unity and Visual Studio, permitting for the compilation and

deployment of the scripts onto the HoloLens. Given that we are a group of four working together to design and test

software, we opted to use Git to ensure an effective workflow and sharing of code. We also aimed to not be redundant

in our code, using assets already developed for fair use on Unity’s asset store, and libraries that can be imported

through the package manager. As our project heavily revolves around using AI, we utilized OpenAI’s GPT 4o mini

API technologies to effectively analyze audio and populate previously designed JSON templates, as well as Azure

8

speech and vision services for audio transcription and optical character recognition.

We also were mindful to adhere to HIPAA protocols, laws, and procedures whilst developing our software, and

as such developed technologies to censor sensitive patient-identifying information. This includes names, addresses,

and other confidential data that we redacted before it was sent to AI services that use prompts for unsupervised

learning. While we did conduct field-testing in simulations, we have collectively made the decision to not let our

software be used for real-life calls as it would require extensive IRB approval that would be too time consuming for

our development timeline.

9

Chapter 2

Requirements

2.1 Functional requirements

Functional requirements describe what EMT Vision must do. These are the specific features and behaviors that our

project should have to perform in order to meet the needs of the user. These requirements essentially define the core

functionality of the project and as such are critical to it’s ability to achieve its intended goals. Different requirements

have different priority levels for our project, that we used to effectively order our development process.

The first functional requirements for EMT vision are the highest priority and most important to the project. These

objectives are essential to EMT Vision’s mission and purpose to ultimately meet the needs of our users. These parts

of the project are key and as such we consider them nonnegotiable end goals. The following are what we identified as

our core functional requirements:

Audio Recording and Transcription The system must be able to record and transcribe audio. It must record do so

through onboard microphones on the HoloLens 2 and then save this locally before being passed to an internal

agent that can process the audio file, turning it into a transcription of the recorded audio in the form of a text

string. It is also imperative that this audio buffer should then be immediately deleted for the sake of privacy.

Information Analysis The system must analyze and summarize key information from the transcription of the audio

recording in a new JSON. It must do this by going through the audio transcription and identifying the importan-

t/relevant information and adding it to a JSON to be displayed.

Information Display The system must be able to display the summarized information on the HUD of the HoloLens

2 by reading the JSON with the summarized information and displaying it on screen in a simple, user friendly

manner.

These three features are at the core of what our project aims to do. Therefore they are the highest priority functional

requirements for EMT vision. These methods work together to aid the user by showing them important information

10

from their conversations with patients in a clear and concise manner. It also stores the information securely in the

database so that the user can easily go back and reference past data when they need to.

In addition to these requirements, there are other functional requirements for EMT Vision. These features and

functions are not as high priority as the previously identified functional requirements, but this does not mean they

are not important. These requirements are still essential for EMT Vision to function as a powerful tool to assist

paramedics. Some of these requirements are also features that were requested by those we met with Santa Clara

EMTs. The following requirements are essential to overall functionality and user experience:

Translate Languages The system must be able to translate different languages. It must translate the audio to English

before the audio recording is transcribed and summarized. This allows EMT Vision to be used in scenarios

where English is not being spoken.

County EMS Protocols The system must display official Santa Clara county protocols for the user. It must access

official documentation that lists treatments and procedures before displaying them in an interface that is clear

and easy to use. The menu for navigating this should be similar to the existing Santa Clara EMT app that is

currently on tablets used by Santa Clara EMTs, and should have the ability to track progress.

Detect Medication Labels The system must be able to detect and analyze a medication label. It should be able to

identify a medicine bottle and find the label for what medicine it is, along with other important information on

the bottle. It must then display this information on the HUD of the HoloLens 2 for the user to see.

Although these functional requirements are not as high priority as the previous, their implementation is still re-

quired to further improve the usefulness of EMT Vision. The ability to translate different languages is particularly

helpful in diverse communities that speak multiple different languages. This feature prevents a scenario in which a

paramedic cannot properly care for people due to the patient speaking a foreign language.

The other two requirements, county protocols and medication label detection, were specifically requested during

one of our meetings with Santa Clara EMTs. They requested the county protocols feature specifically so that they

could actively keep track of their progress when caring for a patient. The medication label detection was another

highly requested feature, as they sometimes need to sift through lots of medicine bottles at once and having a way to

quickly identify what each one is for would improve their efficiency in caring for patients.

Although these functional requirements are not as high priority as the previous, their implementation is in no way

nonessential; however, they are not at the core of what we set out to accomplish with EMT Vision and therefore have

a less significant priority than the other functional requirements.

11

2.2 Nonfunctional requirements

Nonfunctional requirements describe the operational qualities of the system, focusing on performance, security, user

experience, and other qualitative attributes. These requirements ensure that the project is reliable and efficient while

also ensuring that it adheres to important standards and guidelines. In short, nonfunctional requirements describe how

our system should be, rather than what it must do.

Similarly to our functional requirements, we have separated our nonfunctional requirements by priority. The more

important nonfunctional requirements have a higher priority as they are important qualitative features for EMT Vision

to have. The following nonfunctional requirements are what we identified as the highest priority:

Compliance The system must adhere to healthcare regulations regarding privacy and security, such as HIPAA. This

affects how EMT Vision stores and uses patient information, as violations of these standards could result in

serious legal issues.

Accessibility The system should be easy to use and simple to learn. It should be easy for a user who has never

interacted with AR technology before to figure out how to utilize EMT Vision to its fullest when they are in the

field.

User Interface (UI) The system should have a clean and easy-to-use UI. Menus should be well formatted, text should

be clear and readable, and the general flow of the various interfaces should be simple and easy to follow.

User Experience (UX) The system should have multiple features that enhance usability and UX. It should have vari-

ous quality of life features like scrolling through menus, increasing or decreasing the text size, or hiding certain

parts of the menu as to avoid cluttering the HoloLens 2 HUD.

These features are our core nonfunctional requirements because they focus on two key issues. Firstly, complying

with standards such as HIPAA is very high priority and is critical to EMT Vision avoiding legal issues regarding patient

privacy. Secondly, making sure EMT Vision is accessible and user friendly is vital to its success. Some paramedics

may not have a lot of experience, if any, with this kind of technology. As such, it is important that it is easy to use and

understand. It would be counterintuitive if the project we specifically designed to aid and assist paramedics instead

made performing their jobs more difficult.

The rest of our nonfunctional requirements focus on the consistency and efficiency of the system. These require-

ments lay out qualitative features of EMT Vision that are important for overall usability. Fulfilling these requirements

will help EMT Vision achieve its goal of being a useful tool for paramedics as it is intended to be.

Reliability The system should be reliable and consistent when performing tasks. It should be capable of completing

the various tasks from the use cases in Section 1.1 reliably, otherwise it could end up becoming a hindrance to

12

the user instead of helping make their job easier like it should.

Efficiency The system should be able to update the information in the HUD in a reasonable time frame. It is impor-

tant that the system can keep up with the paramedic using it, as they often work in fast moving and stressful

environments.

Readability The system’s menus and interfaces should be easy to read. The display of the summarized information

from the JSON, as well as other features that display text on screen, should be clear when displaying on the

Hololens 2 HUD. Users should have no problem reading button or menu labels, in addition to the actual patient

information.

These nonfunctional requirements are not as high priority but still important for the overall usability of EMT

Vision. If all of these nonfunctional requirements are satisfied, then we will have made the ideal version of our project

and it will be a powerful tool that will aid and assist Santa Clara EMTs as they care for patients when in the field.

13

Chapter 3

User Research

3.1 Methods

To gain a complete understanding of the technical challenges faced by paramedics in the field, we conducted interviews

and surveys to assess the technologies they currently use. Paramedics are tasked with collecting critical information

about patients and the nature of their emergencies, both at the scene and en route to the hospital. This data is typically

communicated in real-time to the receiving medical facility to ensure that hospital staff are adequately prepared upon

the patient’s arrival. Currently, this information is manually entered into an iPad application, a process that has

proven to be inconvenient and inefficient in the dynamic environment of a moving ambulance. The application is

called ImageTrend and is accessed by paramedics simply through a web browser that relies on the ambulance’s wifi

connections susceptible to inconsistency in remote areas or tunnels. Manual data entry not only increases the likelihood

of typing errors but also diverts the paramedics’ attention away from direct patient care, which can be detrimental in

high-stress, time-sensitive situations.

When we reached out to the Santa Clara Fire Department, who serves our campus and the surrounding areas, to

validate our ideas. The response from the fire chief was highly encouraging, leading to an in-depth discussion about the

operational challenges firefighters and paramedics face daily. We presented our preliminary ideas, including computer

vision powered diagnosis and real-time transcription using natural language processing for summarization. Through

these discussions, we aimed to understand how integrating augmented reality (AR) and artificial intelligence (AI) into

ambulance workflows could assist first responders during high-pressure emergencies.

We engaged directly with these professionals and gained insight into the hardest parts of their work day. We

found that they needed immediate access to patient history, step-by-step procedural guidance, and real-time hazard

awareness. With this input, we refined our project’s objectives and ensured that the final product would be both

practical and beneficial to those working in emergency medical services.

14

3.2 Stakeholder Needs

Emergency scenarios are inherently unpredictable, requiring highly trained first responders who can rapidly assess

situations and make critical decisions under pressure. Recognizing this, our objective is to develop an assisting AR

headset that serves as a decision-support tool rather than a replacement for paramedics or firefighters. These first

responders remain our primary stakeholders, as they are the individuals who will directly interact with the technology

in real-world emergency settings.

The Santa Clara Fire Department plays a crucial role in safeguarding the lives of over 225,000 residents in our

community, relying on a team of just 66 firefighters and officers to provide 24/7 emergency response services. Given

the high-stress nature of their work, these first responders frequently deal with fatigue, split-second decision-making,

and the mental strain associated with witnessing traumatic events. The cumulative impact of this exposure can lead

to burnout and, in many cases, post-traumatic stress disorder (PTSD). By optimizing their workflow using our AI-

assisted augmented reality, we aim to reduce their cognitive load, minimize any human errors, and enhance situational

awareness, which will ultimately improve both their efficiency and well-being.

In addition to the firefighters and paramedics, our secondary stakeholders include the broader population that

depends on these emergency services. By equipping first responders with tools that enhance their efficiency and

decision-making accuracy, we indirectly improve outcomes for patients and accident victims. The ability to provide

faster, more precise care in critical situations benefits everyone who may one day rely on emergency services.

Figure 3.1: Paramedics use an application called Im-
ageTrend to collect and communicate information to the
hospital, which is accessed through a web browser.

Figure 3.2: The ePCR form layout in the ImageTrend
application.

15

3.3 Paramedics Experiences

To fully understand the experience of being a paramedic, we spoke to Jack, a young EMT who had joined the Santa

Clara Fire Department last December and was still on probation. This is a stressful period for him, as he is expected

to prove himself in his first two years on the team or could be subject to being removed at any moment. This position

comes after having already gone through a rigorous six months of training in the academy, which he could only do

after passing the NREMT. He then had to be successful enough in the academy to be one of the few competitive

enough to join the crew, who hold high standards for their recruits.

Becoming a paramedic is a rigorous process that typically takes between two to four years. It involves complet-

ing an accredited training program, gaining hands-on experience in both clinical and field settings, and passing the

National Registry of Emergency Medical Technicians (NREMT) exam, an assessment that is both academically chal-

lenging and physically demanding. Despite these significant requirements, paramedics in Santa Clara earn a median

base salary of an estimated $87,000 [11], which falls far below the area’s median household income of $174,000 [24].

Given Santa Clara’s exceptionally high cost of living, particularly in housing, this wage gap can place financial strain

on people working in the profession.

On top of the financial stress, the emotional and psychological toll of working as a paramedic is overwhelming.

When they respond to high-stakes emergencies paramedics witness traumatic injuries and handle extreme emotions.

They have to be in life-and-death situations on a regular basis and this can take a lasting toll. Research has shown that

paramedics experience significantly higher rates of PTSD compared to the general population. A systematic review and

analysis by the University of Heidelberg found that altogether the 12-month prevalence of PTSD among paramedics

was 20.0% (95% CI = 16.1–24.3%), which is significantly higher than the 3.1% observed in the non-exposed general

population [13]. The effects of this psychological burden often result in chronic anxiety and depression, as well as

sleep disturbances and emotional detachment. This not only affects their personal well-being and relationships but

also increases the risks of burnout, substance abuse, and even suicidal thoughts, which can potentially compromise the

quality of emergency care that we rely on.

16

Figure 3.3: The ambulance interior seats one paramedic
and a patient. Most of the space is occupied by equip-
ment.

Figure 3.4: The fire engine interior seats the station cap-
tain, one paramedic, an engine technician, and two addi-
tional firefighters.

3.4 Current Tools

Paramedics are tasked with collecting critical information about patients and the nature of their emergencies, both

at the scene and en route to the hospital. This data, known as electronic patient care reporting (ePCR), is typically

uploaded synchronously to the medical facility receiving the patient, enabling hospital staff to prepare for the patient’s

arrival. Currently, much of this information is manually entered into an iPad in a process that, while functional, proves

inconvenient and inefficient in the dynamic environment of a medical emergency scene or the unstable conditions of

a moving ambulance. The iPad application used by Santa Clara paramedics to handle patient data transfers is called

ImageTrend and is accessed through a web browser using the ambulance’s Wi-Fi connection. The ambulance’s cellular

connection can be slow in remote areas, in tunnels, or other network dead zones, posing the risk that patient data could

be lost or communicated inaccurately. Manual data entry not only increases the likelihood of user input errors but also

forces the paramedic to prioritize staring down at a screen, diverting the paramedics’ attention away from upholding

optimal patient care. This no-win dilemma is ultimately detrimental in high-stress, time-sensitive situations. From our

conversations, ePCR applications generally are viewed to be intuitive and lengthy, although ImageTrend is regarded

more positively due to its customization and streamlined UI that appeals to less tech-savvy users. Nonetheless, this

existing means of communication is not in line with other technological advancements in other industries. Meanwhile,

the only other notable communication equipment available to paramedics consists of standard radios or cell phones,

which lack specialized features and are inefficient for the variety of situations paramedics experience on a consistent

basis.

Language barriers further complicate the efficiency of emergency medical response, particularly here in Santa Clara

County, where approximately 21% of residents are not proficient in English [5]. These communication challenges can

17

delay the accurate relay of critical information, potentially impacting patient treatment. However, advancements in

natural language processing (NLP) technology present promising solutions. Real-time translation tools using NLP

can bridge language gaps so that paramedics and patients can always communicate. Further, NLP can automate the

extraction of important information from conversations, reducing the work for paramedics and enhancing the accuracy

of data transmitted to hospital staff. With this, we can also ensure that sensitive patient data is redacted and privacy is

upheld.

In addition to NLP, image processing technologies offer transformative potential in ambulance care. High-resolution

imaging combined with artificial intelligence (AI) algorithms can help the diagnosis of conditions like fractures, inter-

nal bleeding, and dermatological issues. For example, computer vision analysis has demonstrated diagnostic accuracy

rates of up to 94.6% for identifying skin cancer lesions, which is similar to that of experienced dermatologists [9].

Integrating such technologies into emergency medical services could expedite the identification of critical conditions

by helping to guide pre-hospital treatment decisions, and improve patient outcomes with fast and accurate diagnoses.

3.5 User Stories

To learn about the needs and concerns of emergency responders, we presented our project proposal to two local Santa

Clara fire departments and had open discussions to get their feedback. Considering our lack of on-call experience,

we hoped that these conversations could provide invaluable insights into the realities of emergency response work and

help us better understand the more subtle, day-to-day struggles. Although not all suggested features will be included

in our project, we hope to incorporate the options that match the general feature set of our project.

One recurring concern raised during our discussions was the issue of privacy. Many emergency victims are in dis-

tress and may not want their condition or situation recorded or exposed in any way. Taking this feedback into account,

we have made privacy a top priority in our system design. Our approach ensures that any data collected by the headset

has identifying patient information redacted, securely stored, and only accessed when necessary. Rather than relying

on video recording, our system primarily uses real-time overlays and AI-generated summaries to assist first responders

without compromising the dignity and confidentiality of the individuals receiving care. Another request was to include

department protocols in the project. Often, EMS professionals are in situations that require strict procedures to be met

exactly, which while already memorized, can benefit from a HUD overlay flowchart. This is particularly helpful when

in less common situations like extreme emergencies involving coordination between different departments or patients

with obscure medical symptoms. During these calls, adrenaline can overcome preparation, causing incoordination and

inefficiency when such mistakes are potentially the difference between life and death. A further comment provided

by the EMS was to incorporate the ability to translate a variety of languages. Considering our location in California,

this feature was a consensus-beneficial addition to better assist the arrangement of unique cultures and languages in

18

the greater Santa Clara community. We hope that through the use of AI summarization, our model will automatically

and accurately translate the more frequent languages in the local area, as well as English, to improve communication

with previously under-represented immigrant communities. Another surprising piece of feedback we received was the

capacity to call hospitals. During medical calls, serious conditions frequently extend beyond the permitted abilities of

a paramedic, but depending on the situation, they still may be able to continue aid through feedback from doctors. Cur-

rently, this may require the professional to remove their gloves, find their phone, and call the corresponding hospital

assistance line, which can waste time. Through the headset, this could be streamlined functionality to swiftly acquire

hands-free consultation. Although this isn’t a priority, this is a feature we believe we could accomplish after complet-

ing our more pressing capabilities. Another lower-priority goal we would like to tackle, if time allows, is the ability to

scan medicine bottle labels for automatic documentation into patient records. While engaged in a medical call, a fre-

quent experience among paramedics we met with was that patients often possess a substantial quantity of medicine pill

bottles, and each must be manually cataloged. Despite this inconvenience generally not posing life-threatening risks, it

is infamous for being tedious and slow. Consequentially, these challenges open the risk for mistakes in documentation,

increase call durations, and distract the medical professional from attending to the patient.

3.6 Ride-along Immersion

We deepened our understanding of the real-world challenges faced by paramedics by each participating in ride-along

experiences with different crews in the Santa Clara Fire Department. These immersive experiences provided first-hand

exposure to the high-pressure environments in which our technology will be deployed. By combining direct field

experience with a thorough review of existing case studies, we aimed to design a system that aligns seamlessly with

the needs of those who will rely on it in life-and-death situations.

Figure 3.5: The firefighters let Jack Landers try on protective gear and carry a hose, so that he could experience
firsthand the physical strain of their work.

19

Chapter 4

Design and Rationale

4.1 Overall Design

EMT Vision is designed to obtain, analyze, and display information for the paramedic who uses it. Featuring an

interactive protocol display, patient information list, live feedback, and cloud computing, the headset is an incredibly

versatile tool capable of being utilized in a variety of situations. We designed this headset to function as an assistant

rather than replacing paramedics, thus improving the efficiency and quality of patient care, while also reducing stress

and workload from the responding crew.

Our headset functions by visualizing a non-obtrusive interactive display for the user while still maintaining the

capability for viewing real life. The entirety of our features may be enabled or disabled, either through physical hand

gestures or vocal commands.

When designing this project, user experience was a forefront priority, as we were developing software catered

towards those who were, for the most part, unfamiliar with this technology. Given this, we designed our headset to be

as accessible as possible, providing multiple options for human interaction and allowing the user to interact with the

HoloLens 2 in a way that feels most native to them. Furthermore, we wanted to ensure the confidentiality of patients,

and thus securely store patient information in an encrypted database, hidden behind authentication and authorization

layers.

20

4.2 Headset Screenshots

Figure 4.1: The full User Interface (UI) visible on the headset.

Figure 4.2: The patient data display, visible per each patient.

21

Figure 4.3: The patient list visible on the UI.

22

Figure 4.4: Our protocol and procedure display for Santa Clara County standards.

23

4.3 Website Screenshots

Figure 4.5: Website commercial landing page.

Figure 4.6: Website interactive Dashboard, showing overall statistics and important information.

Figure 4.7: Per-Patient information display, showcasing ePCR data for that individual.

24

4.4 Protocol and Procedure Display

During one of our meetings with Santa Clara EMTs, we were explicitly asked to create a feature to view and track

the progress of protocols and procedures on calls. To do so, we accessed the official 2025 documents listing these

treatment plans and imported them into Unity. We decided to design an interface that is easy to navigate and friendly

to those unfamiliar with AR headsets, with easy-to-read buttons that may be either clicked by hand or verbally selected.

We also designed our GUI to be as accessible as possible, mimicking the already-familiar design of the official Santa

Clara EMT app which is used on rig’s tablets.

Utilizing MRTK3 pre-made assets, we designed a navigatable menu from which you may select various categories,

each copied directly from the Santa Clara county policies and procedures app. Users may then view protocols and

procedures in 3D space, with the capability of tracking which step they have visited using checkmarks rendered over

the buttons. While basic, this was surprisingly one of the most demanded features from the general EMT population

for the city.

Another diagram of procedures used by paramedics on an Ambulance is the hospital details chart. While on a

ride-along with the Santa Clara fire department ambulance, we were shown a chart inside the apparatus showing all

local hospitals, their specialties, and their phone numbers. The paramedic is expected to have this flow memorized, but

informed us that easier access to it would still be helpful. This includes hospital names and their corresponding phone

numbers, locations, ID, and approved treatment services. The patient’s preferred hospital is generally chosen, although

for code three incidents (emergencies), the medic will choose the closest facility that specializes in that condition (such

as burn center, comprehensive stroke center, etc).

4.5 Audio Recording and Analysis

Information acquisition is initiated through activating a “start recording” button on the HUD, which activates conver-

sation transcription via the HoloLens 2’s onboard microphones, although this collectively hears both ambient and user

sound. This data is dissected into intervaled 20-second subsections and saved into a local file. An internal “watcher”

script, which records the local path of the directory where recordings are stored, detects new-added audio files. This

information is then passed to our Azure AI Agent, which utilizes Microsoft’s Speech Services to process the .wav

audio file into a string. Documenting dialogue as text instead of audio files is essential to transfer this data from

the headset to the backend server and to OpenAI for processing, especially since ambulance WiFi is often unreliable

outside urban areas.

After a recording is transcribed, the text string is sent to our OpenAI summarizer which filters text from the

conversation by comparing it to desired categories of user information such as allergies, injuries, medications, and

dozens of other key descriptions. Relevant information is populated into the corresponding JSON text field, with

25

unmentioned sections remaining blank. Utilizing a highly customized prompt and the ability to read from local files,

we can write and store user data in extreme detail while discarding redundant information. This data is then sent to two

services, one being our Unity Text Render service, which displays the summarized information on the HoloLens 2’s

HUD, whereas another instance of the data is sent to our external database hosted by Supabase, a PostgreSQL service.

To implement the capability of continuously recording and updating a patient file, every time a new patient is

created on the headset by the user, a unique patient ID and time stamp is generated. This is then set as a local variable

within the script, which is used to either create or add columns within its respective row in Supabase. This logic

also applies to the patient select menu, which allows paramedics to resume the recording for a previously treated

patient by reopening their file. While the “start recording” button remains toggled, the 20-second audio recording and

processing will loop until the button is toggled off, simulating a contiguous conversation. However, passing the AI

such defined durations of conversation had presented flaws in our initial design with inaccurate data analysis. Firstly,

due to the strict recording cutoff time, audio recordings are frequently begun or concluded within a sentence from

another audio file. This causes the AI to lack the necessary context needed to understand the spoken words, such as

the sentence saying ”I do not have an allergy to peanuts” potentially being read as ”I do not-” and ”-have an allergy to

peanuts” between two different files, enabling incorrect documentation. Lengthy conversations also resulted in the AI

overriding or incorrectly joining previously established information, such as a patient previously saying their name is

”Tom” at the start of a call and a later audio recording detecting someone else stating their name is ”Bob”, leading to

inconsistency. We have worked to alleviate these concerns by providing extended, overlapping recordings to include

needed context, as well as defining stricter guidelines for the AI to overcome provided data inconsistencies.

Another complication we experienced with implementing the audio recording and transcription scripts was that

the libraries for OpenAI we planned to use were not compiling on the headset. The Microsoft Hololens 2 is built in

a UWP framework, also known as Universal Windows Platform, allowing for easy porting of applications between

UWP devices. However, after creating a Python script for the headset, we learned that UWP does not support the

Python language, forcing us to research alternatives. Despite trying to still access the Python imported libraries that

contained the AI transcription software we planned to use, we ultimately pivoted to instead utilizing AI libraries from

the supported CSharp language.

4.6 Database

Provided that we utilize an external database to store user data, patient confidentiality is a core concern. Supabase

offers HIPAA compliance for ensured security, allowing us to store identifying information securely. It should be

noted, however, that we elected to not pursue this option as it would require a monthly fee of roughly 600USD, though

this would be a viable option if this project were to scale to a startup.

26

We may access our data through POST and GET calls to Supabase, which allow us to recall previous call in-

formation. This is beneficial in the instance the paramedic is treating multiple patients at a time and needs to resume

treatment on the former. Further, this data may then be streamed to medical professionals awaiting at regional hospitals

or treatment facilities.

Considering that we are storing potentially confidential patient information, we must implement all security mea-

sures possible. To ensure the encryption and hiding of patient data from unauthorized users, all calls to the database

are constructed on the backend. For our interactive dashboard, Supabase calls are run on the server side, returning their

value to the client. In Unity, we may simply put these calls within our scripts. To prevent the access of databases from

external users viewing our source code, we also have hidden access keys and other tokens within local environment

variables and app configuration files, from which they are read by scripts. These files are intentionally not pushed to

our GitHub repositories, ensuring they remain secret.

4.7 User Interface

Implementing a simple, quickly-navigable display for the headset user was essential for efficient usage while assisting

a patient. Our solution was to separate different user actions using clickable buttons with labels and icons to improve

identifying available actions to the user. Key quality of life options for the patient info include text size increase or

decrease buttons, next or previous page buttons (for patients with data that extends beyond a single page), and the

ability to drag the HUD in any direction (while it still rotates to face the user). For general menu options, there is

a reset layout option to move the HUD back to its default position, a minimize that collapses the HUD to improve

environment view ability, and a start record toggle to begin recording information about the patient. Additionally, we

have buttons to show or hide further menus, one for county procedures and one for a list of available patients. As a

result of all of these options, we hope that users can easily customize their layout to fit their needs and traverse menus

in a way that feels intuitive. Considering the variety of technical experience within the department, we opted to retain

all of the project’s functionality on a central panel, referred to as a slate, to avoid users getting lost in menus within the

application. In the body of the slate is a text box, containing the summarized JSON information that is adjustable by

the previously-mentioned buttons.

In order to display the server info, the headset has a script calling the API every ten seconds (the length of ten

seconds matches the length of each recording), ensuring any changes to the user’s info are reflected on the HUD

in a timely manner. This loop also calls the ten most recent patients from the database and displays their name,

allowing the user to select one as their ”active patient” to display and record conversations for. After engaging in a

ride-along with Santa Clara Fire Department, we learned that certain information is more commonly exchanged with

hospitals, including patient name, age, demographic, gender, chief complaint (the patient’s main injury), pertinent

27

info about complaint (key symptoms), most recent vitals, paramedic’s treatments, and HAM (patient history, allergies,

medication). This preference led us to emphasizing these details (if available) on the first page of patient information

and having supplemental data on the additional other available pages.

4.8 Patient Dashboard

To provide the capability for viewing patient data in real-time to those who are not wearing a headset, we designed an

interactive patient dashboard, protected by secure sign on and authorization for medical professionals granted access.

Our goal in mind for this feature was for doctors to be able to converse with paramedics on calls, providing them live

feedback and suggestions if the EMT were to struggle for next steps. Whatever information that had been recorded and

displayed for the headset user to see is instantly sent to Supabase, from which is displayed on the patient dashboard.

We implemented this dashboard using Next.JS, a Vercel React Framework. This tool utilizes TypeScript, HTML

and CSS to deliver powerful web tools for many different applications. Designing our landing and dashboard pages

in HTML, these client frontends then tie to our server backends, which fetch encrypted and protected data from the

database. To prohibit unauthorized users from accessing confidential user information, we implemented Single Sign

On (SSO) with Google, tied in with explicit user whitelisting for authentication. Doing so prevents users outside of

medical institutions from signing in, and only allows certain medical professionals from within those institutions to

actually read patient information.

To present a working demonstration of our technology, we launched and deployed our web service live, allowing

anybody to test and use it. We did so using Vercel, which allows for the live deployment from GitHub repositories,

while also ensuring that our service passes a build (quality) test.

Figure 4.8: Overview of each step taken in the information display process

28

Chapter 5

Technologies

5.1 System Components

To successfully implement a smart assistant AR headset, we rely on various hardware and software to integrate a

seamless experience that is not just efficient but also easy to use for those unfamiliar with more advanced technologies.

Given this, we aim to utilize the most renowned hardware for the job, as well as highly rated and reliable engines for

running our software. The design goals and selection criteria for the hardware include being lightweight, portable,

long-lasting, and reliable. For developmental purposes, we also have the requirement that the software should be

easily deployed on the hardware. The software requirements include efficiency, accuracy, security, and testability.

5.2 Hardware
5.2.1 Microsoft Hololens 2

The Microsoft HoloLens 2 is a versatile piece of equipment, offering much to our project that is unique to its design.

Featuring an Augmented Reality (AR) visor, robust development tools, and a lightweight design, the HoloLens 2 is

an excellent choice for our vision. While there are many other competitors and devices to choose from, we ultimately

select this headset due to a few key factors.

The Microsoft HoloLens 2 is unique in its ability to maintain human interaction while wearing the headset, with

eyes visible either directly or through the glass visor, depending on how the operator wears the device. This is an

extremely crucial feature to us, as we want to ensure that patients still feel as though the person caring for them is

human, not a robot. As a study by the British Journal of General Practice reports, the second-most common non-verbal

signal among healthcare providers is eye contact, with patients reporting positive feedback, such as ”You can see it

from the doctor’s eyes that he cares and is involved,” and ”You can feel [the personal attention by] how someone looks

into your eyes, not making any notes or writing on a computer at that time; I can see the interest” [16]

We also chose the HoloLens 2 for its lightweight and comfortable design, with an overall mass of 579 grams. Since

the headset may be used for calls lasting upwards of two hours, it is extremely important that it remains comfortable

29

for the user to wear for prolonged periods. In addition, the headset’s AR capabilities and hands-free gestures provide

convenience, making interacting with the headset easy for those unacquainted with the technology.

The headset also features extensive software development support, with many resources available for easy de-

velopment of AR applications through Unity, using Microsoft’s Mixed Reality Toolkit (MRTK) and Visual Studio.

Such pre-existing infrastructures permit easy development, debugging, and deployment of programs written for the

HoloLens.

5.3 Software & Digital Technologies

Provided that this is where the majority of all work lay for this project, we utilized many various software to construct

EMT Vision. Making use of some of the most influential and prominent technologies today, we aimed to design a

project that would be not only practical now, but also serve as a strong piece of equipment for the future.

5.3.1 Unity

As a popular video game engine, Unity is the top choice for developing software for the headset. Featuring an easy-

to-use HUD, many public assets ready for use, and pre-existing support for developing specifically on Microsoft’s

HoloLens 2, Unity provides much-needed versatility to the project.

Development for the headset is enabled through Microsoft’s MRTK3 packages, which provide the framework for

client-based interactions to function in an AR environment (more on this technology in the following subsection). The

general architecture for such a project consists of a ”Scene,” or every asset visible in the running application, and

various other nested components. ”Canvases” are frames containing UI components such as text, buttons, ”toggles”

(or checkboxes), and panels. Within these, we can set up the aforementioned UI assets or configure more advanced

and directly catered interfaces, including menus, scroll lists, and visual database displays.

While the number of features Unity offers may seem overwhelming at first, it is beginner-friendly and easy to

learn. It offers basic development tools for those with little experience and highly advanced tools for professionals and

seasoned developers. Every asset in a scene is fully customizable, with pre-developed settings available to alter these

components to function uniquely. In addition, if none of the designs meet your design criteria, Unity offers the flexible

option to code your own in C#, providing full creative freedom.

Canvases

Diving into specifics regarding Unity project architecture and design, we may explore the varying tools that we utilized

to construct our programs. Primarily, the most commonly used components are UI Canvases, which are essentially

2D ”screens” digitally projected into the AR scene. These screens may be resized to fit any criteria desired, and are

versatile in allowing the developer to select certain behavioral properties, such as always being in the field of view,

30

or acting as an independent 3D object in space, which stays where placed. Canvases act as a baseline for developing

other, more advanced components, such as our checklist and JSON displays. This is due to their ”screen” property,

which allows us to place other assets within the Canvas, effectively creating a user interface.

Notably, we raycast our Canvases in Unity, which means projecting ”rays” from the camera’s location. These may

be perceived as light particles that bounce from an object into the eye, which we may know what the user is currently

looking at (this technique is most commonly used to render shadows in a 3D space). This method effectively allows

the HoloLens 2 to be aware of our rendered objects, and thus permits us to interact with them. If we were not to use

raycasting, the headset would lack the capability to be aware of depth, size, and the intractability of the Canvas.

Panels

Panels are another important aspect of Unity components, serving as the parent of a ”visual tree.” Visual trees, in all

simplicity, are a collection of UI objects and are reliant on having a parent in order to render. Provided this, panels are

a necessary aspect of our design, prohibiting our technologies from being rendered to the user. Further, panels provide

versatility in UI intractability, possessing configuration settings for object grabbing and collide boxes. These two are

notable aspects of designing a successful AR UI, so we shall explore these in more detail.

Object grabbing refers to the ability of an object to be selected and moved using your hand in 3D space. We

may configure certain aspects of object grabbing, such as what mobility is permitted (rotating, scaling, dragging) and

gravity-align (Z axis goes unchanged). We utilize these settings to specifically design interactions for objects within

the headset, ensuring the most convenient and natural movement of our UI.

Collide boxes are equally as important as object-grabbing settings, and work simultaneously to ensure their func-

tion. In short, a collide box is a ”hit” box, or a 3D cube that counts as the volume where an object ”is.” Objects, as

are, do not have any 3D space which they are considered to occupy unless specified otherwise. Provided this, we add

a collide box to give a volume where we may interact with the object. Namely, this is used for hand interactions such

as grabbing and moving UI panels around.

Prefabs

Prefabs are previously made assets, or reusable components within Unity. These may have been designed by other

developers, been imported through external packages, or have simply been a method of duplicating an object. Prefabs

store game components, property values, and child objects as data, and permit the user to reuse such configurations

with ease. Within our project, we utilize prefabs imported through MRTK3’s UI Components, as well as several that

we manufactured ourselves.

MRTK3 provides several useful prefabs for us to use, including already-configured and designed buttons, slates

(comparable to a text panel), and toggles (checkboxes). While these are relatively simple to engineer, the reality

31

of these prefabs being already created and ready-to-implement made for swift development and user design. Such

assets also allowed us to focus more on the back end rather than the front end, and when it came time to develop a

user-friendly design, we were able to focus on layout much more than color theory, font styling, and margin sizes.

We also took the liberty to design our own prefabs, including our dynamic protocol and procedure display, which

consists of an upscaled JPG image configured with varying interactable and transformable components. These are

automatically reused and configured by scripts written in C#, which create an instance of the JPG as an object.

5.3.2 MRTK3

The Mixed Reality Toolkit 3 (MRTK3) is an essential framework for developing the headset’s user interface and inter-

actions. This toolkit accelerates AR development on the HoloLens 2 through Unity. Its reusable prefabs, accessibility,

and UI/UX additions make configuring the headset easy and flexible. Primary features of MRTK3 include voice com-

mands—which we use for hands-free control of the headset—spatial awareness, hand tracking, and configurable UI

assets. This package also contains technologies for eye-gaze tracking, allowing for hover-over effects and selection to

occur simply by looking at an object.

We select MRTK3 over other versions of the framework (MRTK2, MRTK4) due to its extensive support system,

learning resources, and the quantity and specific selection of prefabs and features available inside Unity. Despite

MRTK2 containing unique features that MRTK3 lacks, such as a scrollable menu, and MRTK4 offering prototype

features, we opt for MRTK3 due to its reliability, quantity of assets, and efficient development capabilities.

MRTK UI Components (Non-Canvas)

As previously mentioned in the Unity section, we utilize Prefabs to rapidly develop a functional UI with a working

back end. Reusing already configured assets saves us time and leads to consistent design choices and formatting.

Within MRTK3, many Prefabs are provided which we use, including slates, buttons, and toggles. These are highly

configurable Game Objects, despite being initialized with set attributions.

5.3.3 UWP

Universal Windows Platform (UWP) is a common app platform that permits devices to run Windows. Namely, UWP

allows applications to run seamlessly on the HoloLens 2, our choice of hardware, without having to install the operating

system or implement other workarounds. UWP also possesses the capability of providing direct support to Window’s

MRTK3 software and APIs, permitting AR applications constructed in Unity to run on the headset with ease.

5.3.4 Visual Studio

Visual Studio serves as the primary Integrated Development Environment (IDE) for coding and debugging the appli-

cation. Its seamless integration with Unity, built-in support for deploying UWP applications, and powerful debugging

32

tools make it indispensable for developing and testing software directly on the HoloLens 2. Builds (Unity project

compilations) are directly deployable to the headset inside Visual Studio by specifying the device’s IP and ARM64

architecture, with the software being loaded over a USB connection.

5.3.5 Microsoft Azure

To effectively translate audio files (recorded in .wav for quality assurance as opposed to .mp3, which is compressed),

we utilized Azure’s Speech Services. Through their online dashboard, we were able to configure a service running on

US-West region, permitting fast responses and providing the capability of audio-to-text translation. The speech service,

as is, is capable of translating any words into a string, which may then be used in OpenAI prompts. However, provided

the unique diversity of Santa Clara County, we opted for language translation as well, which is further supported. The

downside of such a capability with this specific service, however, is that the language being translated from must prior

be specified, which will not work when out in the field. As such, we rely on an AI-powered text service, also provided

by Azure, to detect the language prior to transcribing it. From this, we may inform the speech service which language

it should detect, which it then translates to English.

Furthermore, we implemented Microsoft Azure’s computer vision model to interpret information from the scene.

This applies two different APIs each for a unique vision function. The first is a document scanner, which utilized

Azure Document Intelligence to read any pdf format which might include tables and handwritten checklists. This

helps EMTs quickly extract any medical information that might be found on scene which was a common case that we

saw during ride-alongs, when paramedics visit elderly homes. Secondly, there is the pill bottle reader, which detects

text in the image that can then be processed by OpenAI API in order to make a list of any prescription medication

bottles the first responders might find on scene.

5.3.6 OpenAI API

OpenAI API enables natural language processing for tasks like conversation summarization and text generation. With

multiple models to choose from, each featuring strengths and weaknesses, this API provided much flexibility regarding

how we analyze our data. Opting for a cheaper alternative that was still computationally smart (and does not hallucinate

for our task of choice), we selected GPT-4.

GPT 4

Selected as our OpenAI model of choice, GPT 4 is capable of effectively analyzing and filtering out key data from

its passed context. Utilized for eliminating redundant information and filling out patient data forms, GPT 4 serves as

an example of the revolutionary technology of AI, showcasing its expanse capabilities opening new doors within the

medical world.

33

We utilize this technology through UnityWebRequests, sending a JSON payload to OpenAI containing a prompt,

template to populate, and an authorization token. This, on average, takes roughly 5 to 10 seconds to populate, which

when done is then returned back to Unity. We utilize this data to then populate the headset displays and our external

database.

5.3.7 Supabase

Supabase is a PostgreSQL database alternative to Firebase, permitting users to employ real-time subscriptions, authen-

tication, authorization, and edge functions with their data. We employed this service to store all of our confidential

patient information, being securely managed through several layers of security. With built-in HIPAA compliancy,

Supabase was not only a good choice, but a clear one.

We employ Supabase’s GET and POST features to receive and send information, respectively, to the database.

POST requests are only employed on the HoloLens 2, where data is live-recorded, analyzed, and sent in JSON format

to Supabase. GET requests, on the other hand, are both utilized on the headset and our interactive patient dashboard,

the visual frontend for analyzing live and historical data from calls. We ensure security for GET requests by hiding

them from the client side, implementing this feature by having the client request data from the server, which then calls

the GET.

Provided we handle confidential and sensitive identifying patient information, we must ensure that all data is

securely stored and managed on the database. To accomplish this, no user is permitted to view any data from Supabase

unless they are logged in with a Google account (authentication), and are then a specifically whitelisted user within

the organization (authorization). We designed our data interaction stream to work this way so that only registered

medical professionals who are designated to work with the data are capable of interacting with it. Further, the HIPAA

compliance feature that Supabase offers would further secure data in a way such that it being stored on this service

would not violate any patient confidentiality laws (we did not opt to implement this due to pricing).

Information is fetched by passing a project URL and service key into an HTTP request to Supabase. While the

database provides either an anon (public) or service role (private) key to access data, provided that we must maintain

high-level security, we utilize the service role key for the most secure data transmission and access. These keys are

then stored securely in private environment variables, never pushed to any repository or displayed publically for others

to access without permission.

5.3.8 NextJS

The entirety of our frontend is implemented in NextJS, an incredibly versatile React framework implemented in Type-

Script. This tool has built-in optimizations, dynamic HTML streaming, and permits for advanced routing and real-time

database information fetching. Further, NextJS makes it simple to implement a fullstack web application, linking our

34

dynamic UI to our powerful backend services.

NextJS also offers Server-Side Rendering (SSR) and Static Site Generation (SSG), which work together to provide

efficiency and up-to-date data. SSR is the primary feature used on our webpage, working to ensure that patient data is

always up-to-date on any page displayed. This process works by rendering the page at request time, then sending the

rendered HTML to the client. Doing so thus displays the most recent information from the database, and combined

with a refresh of every five seconds, we ensure that live data is always updated without the need to reload the page.

SSG, on the other hand, is used for static web pages such as our login page, which does not require fetching any patient

data and never changes based off of database information.

5.3.9 Vercel

We utilize Vercel to deploy our website to the internet, allowing other users to remotely connect to our services.

Utilizing this tool, we may publish our most recent changes to be viewed publicly with ease, as we have configured

Vercel to watch and read from a public git repository. Once changes are detected, it begins a ”build,” a term for

compiling, packaging, and optimizing code written. This also serves as a quality control, ensuring that no faulty code

or fatal errors may make it to production.

If a build passes, the new scripts are instantly pushed to the production deployment, visible for other users to

interact with. We may also view user traffic, debugging information, and other data regarding our web service from

the Vercel portal. Provided that this web service is free, it made for a great way to deploy the dashboard for our project,

while still ensuring quality and the capability of accessing patient data from any location.

35

Chapter 6

Software Design

6.1 Architecture

The entirety of the software written for the HoloLens 2 is written in C#, whereas all of the frontend patient dashboard

is written in the Next.js, a TypeScript-based framework. To ensure an efficient design and developmental process, we

desgined flowchart diagrams to serve as blueprints for the project. The below architecture diagrams showcases the

low-level and high-level overview of our headset and website design.

6.2 High-Level Architecture

The High-Level architecture for our product (both the patient dashboard and headset) is relatively simple—users will

equip the headset and commence recording through an interactive dashboard. This HUD will be rendered on the

headset’s visor, permitting for both real-life and digital viewing. Upon a recording being started, we will store both

the entirety of the conversation in memory, along with a seperate file for key words.

Once the recording has concluded (upon the user’s request), we send the two conversations, along with a prompt,

timestamp, and patient ID, to our AI agents. These return back formatted data which is then forwarded to our database,

and rendered on both the patient dashboard and the headset’s HUD.

Users utilizing the headset may also view county procedures via our protocol menu, which is attached on the right

side of the patient recording menu. These are customizable, and may be configured per each county’s standards.

Medical professionals and EMTs alike may access our patient dashboard website, which is protected by a secure

authorization and authentication process, temporarily using Google’s OAuth for login purposes. If a user is permitted

to access the website, they may view incoming patient information and revise it as they see fit. This is all conducted

on the web, as we have no mobile app in production.

36

6.3 Low-Level Architecture

Low-Level Architecture showcases in great detail the interaction between several technological components within

software. We expand on the architecture for both our patient dashboard, as well as our headset’s functionality.

6.3.1 Patient Dashboard

Below you may view Figure 6.1, showcasing the Low-Level Architecture for our patient dashboard website. Notably,

it may be exhibited that the user first connects to the login page, which then handles the process utilizing Supabase’s

Auth, routed through Google Cloud Platform (GCP)’s OAuth. Once the user has been authenticated, they are then

authorized if they are a set whitelisted user, at which point their connection is routed to the dashboard page.

Figure 6.1: Low-Level Patient Dashboard Architecture Diagram

6.3.2 HoloLens 2

Below is a diagram showcasing our headset’s architecture in a low-level view, displaying the varying technologies we

employed both internally and externally to ensure a fully automated system of patient data population.

External tools include OpenAI’s GPT-4o and Supabase DB, whereas Azure Speech Services were actually loaded

internally onto the headset. Such dependencies require us to maintain an internet connection at all times while using

the headset—a limitation to our design, though a necessary one whilst using AI.

On the left of our diagram is the headset’s frontend—the aspects visible to the user—and on the right is the

backend, or the parts hidden from sight. Our product functions by recording all audio once initiated by the wearer,

then storing this input in a buffer. This is then sent to the Audio Manager, which processes the information to a string

and, ultimately, a JSON format readable by our database. It is sent there upon completion, where it can be accessed by

our patient displays. We do provide the capability to revise pre-existing patient records, which may be done through

selecting a patient on the patient list and pressing ”record” (not detailed in the diagram below).

37

Figure 6.2: High-Level Headset Flowchart Diagram

38

Chapter 7

Risk Analysis

Provided the complexity and quantity of layers that will comprise this project, an expanse risk analysis must be

conducted to evaluate rather certain features should or should not be implemented, and if so, the amount of time

and resources which should be appropriately allocated toward solving each one. In doing so, we acknowledge the

inherit nature of software development; its risks, rewards, and trade-offs amidst developing and designing an advanced

technology. Through this methodology, we ensure the consistent progression of our project and that we do not waste

resources or time on an unnecessary or excessively risky aspect of the design.

The risk analysis that we provide in the table below (Table 7.1) showcases our analysis of the tasks we deemed

to be notable risks within our project, according to the probability, severity, impact, consequences, and mitigation

for each individual risk. Risks are predicted and analyzed based on their theoretical occurrence of the product post-

development, as it enters the production lifecycle. Severity is rated on a scale of 1–10, where 1 is the lowest risk and

10 being the highest, and impact is calculated as the product of severity and probability.

39

Risk Probability Severity Impact Consequences Mitigation
Cannot provide
HIPAA compliance

0.5 1 0.5 Will prevent the product
from reaching a production
level serving others in the
field.

Obtain funding for HIPAA-
secure database and auditor.

Unable to read head-
set in bright environ-
ment

0.9 5 4.5 Screen becomes unreadable
in daylight, severely limiting
use in outdoor emergency
settings.

Implement voice-driven UI
and high-contrast visual
themes.

Network connectiv-
ity

0.5 7 3.5 Cannot connect to internet
which inhibits the usage of
AI processing.

Have a backup hotspot avail-
able for times that ambu-
lance WiFi is unavailable.

Battery capacity 0.9 2 1.8 HoloLens 2 cannot function
for extended durations
of time without battery
recharge.

Integrate a non-obtrusive ca-
ble or battery system to the
headset.

Cannot guarantee pa-
tient confidentiality

0.8 2 1.6 Cannot conduct real field
tests with paramedics.

Conduct simulated tests in
substitution of authentic
ones to ensure the function-
ality of device.

No hospitals or
paramedic depart-
ments are willing to
collaborate

0.7 6 4.2 Inability to collect real-
world feedback and valida-
tion data.

Seek partnerships through
university networks and of-
fer co-authorship in research
publications.

Thermal overheating
of headset during
prolonged use

0.6 4 2.4 Device shuts down dur-
ing emergencies, interrupt-
ing operation.

Monitor temperature and de-
sign for duty cycles with
cooldown intervals.

Insufficient onboard
storage for logs and
audio

0.5 3 1.5 Limits amount of patient
data that can be saved lo-
cally on RAM.

Implement a periodic sync
and deletion mechanism to
clear old data.

Inaccurate voice
transcription from
strong accents or
dialects

0.6 4 2.4 Misinterpretation of patient
data or history.

Use multilingual transcrip-
tion models that have been
trained on accents.

Table 7.1: Risk Analysis Table

40

Chapter 8

Testing

8.1 Beta Testing

After roughly a month of development, we felt it adequate to attempt and test our software on the physical headset—

prior, we had been testing solely within Unity’s developer application. Provided that our program had been working

and properly analyzing microphone input, we assumed that it would not be a challenge to ensure it worked on the

headset.

Unfortunately, this was not the case, as a brief test revealed that not only did our software malfunction, but the

language we had been coding our software in (Python) was not supported by the headset’s operating system [18]. This

was an enormous setback, and to tell the truth, sort of a wake-up call for the team, as this was an easily avoidable mis-

take caused by a lack of preliminary research. To add insult to the injury, our audio analysis API also was unsupported

by the headset, given that it was developed in the same language as our now paralyzed software.

Provided that we had no working program at this point, we hastily delegated work among ourselves to release a

patch, entirely rewriting our scripts from Python to C#. We also resolved issues with an outdated framework for the

headset, migrating our Unity project from MRTK2 to MRTK3 (Microsoft’s Mixed Reality Toolkit). These changes,

along with some simpler bug fixes (such as resolving an issue where the microphone worked only on the computer,

but not the headset), were encouraging results and led us to develop our first functioning prototype.

8.2 Prototype Testing

For initial prototype testing, we designed test cases that would ensure the proper functioning of basic components,

such as audio translation, data population in the dashboard, and the functionality of the protocol menu, along with its

ability to retain memory of checkboxes that had been marked. Prototype testing did not include edge cases or stressing

the system in harsh environments, such as loud environments, multiple patients being recorded at once, or any other

confusing stream of audio.

41

8.2.1 Prototype Results

As a result of our initial testing, we found many bugs that were essential to be patched prior to a production deployment.

Some of these included the incapability to retain memory of object interactions in Unity (such as what back to navigate

”back” to and marked checkboxes). Further, our initial audio processing was solid, but we discovered that as the total

conversation duration increased, our recording length decreased, ultimately resulting in lost data and incorrect analysis.

These issues, paired with a poor GPT-4o prompt, resulted in poor population of the patient dashboard, rendering our

analysis of audio inaccurate and useless.

Provided the severity of the errors discovered during initial testing, we hastily issued patches for the bugs. Resolv-

ing memory with Unity objects proved quite simple (storing in local memory within a GameObject script), with the

audio processing issues requiring more time to fix. To resolve the problem of incorrect audio recording, we pivoted to

recording the entire conversation, then processing at the end. While this not only fixed missing data (likely due to over-

lapping recordings), it also improved the total cost per patient, provided that each GPT-4o call costs a small amount of

money to run. Combined with a lengthy, in-depth prompt sent to OpenAI, our results became highly accurate, going

so far as to only replace incorrect data and retaining smaller, often missed pieces of information.

8.3 Simulation Testing

To obtain near-real life results, we constructed several simulated calls to extensively test the headset’s capabilities in

loud environments with unclear audio inputs. While initial testing covered the basic functionality for a quiet, calm

environment, we had yet to test a scenario in which multiple people are talking over each other or the patient were to

be unresponsive.

Each test case was given a score out of 100, which depended on the headset’s accuracy in obtaining correct

information from a pre-determined (and randomized) list of patient data. Five scenarios were run for each test case,

and the percent accuracy for each field of data collected was then averaged over these trials to obtain the overall score

for the experiments.

8.3.1 Test Case A: Multiple People Speaking

To simulate this test case, we had a simulated ”paramedic” and another as the ”patient.” Two other people then main-

tained a verbal conversation in the adjacent background. The purpose of testing this case was to see if the headset

could accurately maintain awareness of the correct, intended information being acquired by the microphone amid

other voices.

The results we obtained for this trial were phenomenal, and much higher than our expectations. The accuracy

rating for multiple people speaking at the same time was an 89%, mainly due to the headset’s onboard microphone’s

42

capability of filtering background noise.

Figure 8.1: Accuracy score for Test Case A: Multiple People Speaking

8.3.2 Test Case B: Noisy/Loud Environment

Simulating a noisy environment included testing the headset outdoors, with a car idling nearby, and audio of both

traffic and crowd chatter being played loud mere feet from the headset. The purpose of this test case was to see if the

headset was capable of functioning in realistic outdoor environments, with a variety of sounds that could influence the

ability to record decipherable audio.

These results came back high, scoring a 94% accuracy rating in an environment of 80dB or higher. This was quite

surprising, as we did not expect the headset to be able to analyze entire words when speech was audibly impacted by

significant background noise. These results were also very encouraging to us, primarily given that emergency scenes

are often loud, outdoors, and full of noises that could impair audio recognition.

8.3.3 Test Case C: Incorrect Data Recovery

For our third test case, we would occasionally state incorrect data to the headset in reference to the patient. Following

this, we verbally indicated that we had provided the wrong information and informed the AI to correct it with new data.

This trial was, unlike the other two, going to be entirely dependent on our software and AI prompt implementation, as

we are not impairing audio recording in any way.

Similarly to the other tests, the data was incredibly promising, outputting a 98% accuracy rate. This result was

crucial because patients may be disoriented, scared, or incomprehensible at times, so the ability to later adjust the data

43

Figure 8.2: Accuracy score for Test Case B: Noisy/Loud Environment

fields enables immediate corrections as new information is provided. The results for Test Case C were our highest

of the three, scoring a 98% accuracy rating for being capable of differing between incorrect and correct data. When

instructed that input data was wrong and needed revised, the AI was able to successfully replace and select the right

information needed for each field.

8.4 Theoretical Field Testing

Provided the many restrictions regarding patient data recording and storage, we were unable to receive permission to

conduct real-life field tests during the academic year. However, had we been able to pass the regulations regarding

these criteria, we would have liked to test the headset onboard ambulances and on scenes. Due to the device requiring

an internet connection to function, we would have liked to see how the headset performed in an outdoor environment,

and if it could have been capable of functioning on the rig’s WiFi or a hotspot.

We also would have loved to conduct data analysis of patient data, potentially exploring pattern recognition of

recurring symptoms and treatments. Had we been able to study realistic input data, we potentially could have caught

illnesses, injuries, and suggested remedies prior to human detection.

44

Figure 8.3: Accuracy score for Test Case C: Incorrect Data Recovery

45

Chapter 9

Schedule

9.1 Overview

Developing our multi-phase application is very complex, requiring planned stages of research, development, field-

testing, and debugging to guarantee that goals and expectations are met. Consequently, our project required a well-

planned road map to allow us to remain on track while also allowing flexibility as setbacks occurred. To aid in

visualizing this process, we provided a detailed outline of our initial development process timeline, including, but not

limited to, the steps for writing our senior thesis, the software integration on the HoloLens 2, and project testing with

Santa Clara first responders.

9.2 Gantt Chart Overview

The chart is organized into two sections: thesis and project. Both of these deliverables are organized by milestones

within a desired time frame. The thesis sections are all independent of one another, requiring less coordination to or-

ganize together. We planned each phase of this to demand a similar time commitment. However, we ultimately did not

develop the thesis in the same order of categories, primarily due to the improved efficiency of delegating these chapters

as we completed the corresponding component of the project. Although this approach reduced organization from the

”one component at a time” ideology, it ultimately allowed for better depth and detail while the topics were current.

Meanwhile, the project followed a phased linear methodology with iterative refinement, resulting in a similar pipeline

to the waterfall model. We split the project into key functionalities, including prototype, testing and feedback-based

improvements, additional features, and final polish. The prototype consisted of core functionality required for a min-

imum viable product (MVP). This meant audio recording, analysis, and display on the headset with a basic interface,

although this timeline was expanded through February due to unexpected software constraints that limited expected

development. After this was functional, we began creating a more interactive UI, implemented a database, and started

testing to discover potential improvements and shortcomings with our early design. This milestone transitioned into

our additional suggested features phase, where, after visiting Santa Clara Fire Department once again, we embedded

46

county policies into the headset and developed a web app portal for external access to the data. Our final stage was a

last round of polishing, bug fixing, and testing, ensuring our product was seamless to use, reliable, and simple. This

provided valuable, subtle optimization to fulfill our initial goals of integration into the often not technologically savvy

firefighters’ routine equipment.

9.3 Setbacks

As previously alluded to, our project development experienced multiple key setbacks that postponed expected dead-

lines. Although we ultimately managed to adapt and achieve our primary goals, such challenges led to additional

features being reduced or removed to still satisfy our vision within the given time frame. Our first was the limita-

tion of Python being incompatible with UWP, the development framework of the HoloLens 2, preventing our planned

dependencies and scripts from being used. As a result, we shifted towards supported programming languages like

C++ and C# and external API available through these languages, specifically OpenAI and Azure Speech Services,

while rewriting existing scripts to incorporate these changes. Another complication was that Hololens-specific Unity

imports were needed to access device functionality. While simple in theory, these often lacked clear documentation

for different versions, dependencies, and compatibility. As a result, we spent several weeks researching compilation

errors and deployment requirements specific to the headset, particularly since these issues did not occur in the Unity

desktop environment. This presented a recurring obstacle throughout the development cycle and significantly extended

our debugging timeline. As a consequence of these major setbacks, certain features we had hoped to include, namely

automatic language translation and cloud-based data analysis, were unfortunately cut from the project.

47

Chapter 10

Constraints and Standards

10.1 Constraints

Developing a medical device poses several constraints, restricting many potential features and leading to other workarounds

for problems that have no realistic solution. In the development of EMT Vision, we faced several challenges through

technical and legal constraints.

10.1.1 HIPAA

The strict legalities regarding patient confidentiality and data analysis present a challenge to this project, which pre-

vents us from testing the headset on real calls. This is due to compliance with HIPAA, which states that if information

that can be used to identify a patient is discussed, a breach has occurred in the Privacy Act. To combat this, we would

have to develop our own AI model, so that any recordings containing potentially sensitive identifying information

would not be sent to an AI model to be trained on.

10.1.2 Hololens 2 Technological Limitations

Technological limitations greatly impact this project. While the Hololens 2 is a very capable tool, it still has its

limitations. The headset has limited processing power and battery life, as well as being a costly piece of equipment.

and is costly

The HoloLens 2 is severely limited by a few defining hardware designs, most so by the battery life. While the

battery is capable of running for 2-3 hours, due to the resource-intensive software running on the headset, it tends to

die in under one. This has imposed a challenge of the headset being capable of running for the entirety of a call, and

thus led us to develop external hardware to extend battery life.

Processing power is also a leading factor in what we may or may not implement on the HoloLens 2. With 4GB

DRAM, we are incapable of running many powerful AI models locally on the headset, and thus must connect via

Internet to external libraries. This, as a result, lowers the efficiency of our software as transmission and propagation

48

delay must now be factored in to the total run time of AI computations. Smaller hardware constraints include the

HoloLens’ weight, which while light, may tire the user’s neck or head after extended usage, and thermals, as the

headset can often get warm with prolonged use.

Software constraints for the headset include the platform on which it runs: UWP, which severely limits the flexibil-

ity and liberty of selecting which tools we use to develop the program. For example, Python is not natively supported,

and thus could not be used for this project (this also limited which libraries we could choose from). We are also limited

by the headset’s 64 GB of storage, which leads us to develop highly efficient and memory-compact algorithms and

procedures.

We also had to adhere to real-time processing, and as such, the headset posed some constraints on this feat. Given

the need for fast responses, a strong preference was developed to run ML models locally on the HoloLens 2. However,

its RAM and GPU severely restricted our capabilities of doing so.

10.1.3 AI Bias & Fairness

Given that our software actively utilizes OpenAI’s GPT 4o mini to analyze conversational data, we had to conduct a

multitude of testing to ensure there was no AI Bias toward any demographic or minority. This included the accurate

transmission of data amid varying accents, dialects, and culturally related information (such as ethnic names).

10.1.4 Accessibility (WCAG 2.1, Section 508)

A notable constraint that we adhered to was accessibility, and ensuring that our device would be usable by paramedics

of all kinds. Provided that many are not extremely knowledgeable with technology, let along more advanced concepts

such as AR, we intentionally implemented user-friendly and easy-to-learn designs into our software. Verbal com-

mands and hand gestures work together to ensure such accessible usage for those who may not be familiar with our

technologies.

10.1.5 Data Security & Encryption

Provided that our device works primarily with medical patients, it was a top concern and priority that sensitive infor-

mation would be kept secure once obtained. Given that we cannot leak any identifying information, we opted to keep

our project in the testing stage, as we did not have enough time to develop our own AI model, ensuring data security.

Further, an encrypted method of sending data to and from the headset and local server was rather challenging, and

posed as a large constraint for our project.

49

10.2 Standards

When designing a medical device, it is crucially important to adhere to the many policies, rules, and laws regarding

patient confidentiality and safety. To ensure the privacy of patient data and adhere to a multitude of technological

policies, we adhered to the following standards.

10.2.1 IEEE Standards

The IEEE Code of Ethics is a framework of principles provided by the IEEE that promotes responsible and socially

safe technical solutions. Due to the headset overlapping with life-or-death situations, the AR software must ensure

the ability of first responders to provide aid to patients without inhibition or unauthorized sharing of patient data (e.g.,

HIPAA or GDPR).

• IEEE 1012 V&V: Individual software modules must be tested before integration to reasonably expect the

application to run as expected, which includes components such as speech recognition, data retrieval, and AR

visualization. In validation testing, the project should be conducted under simulated field trials with acceptable

effectiveness before human trials are begun. As testing progresses, risk testing must account for the dangers of

system failures, such that offline access or manual alternatives to AR capabilities are always available to fall

back on if needed.

10.2.2 ISO Standards

Due to the nature of our project being a medical technology, we must comply with and follow several medical stan-

dards.

• ISO 14971 (Risk Management): This standard requires us to identify sources of risk and implement control

measures. Due to this, we identified several patient confidentiality risks and selectively chose our technology

stack in a way that would be most secure. While we did not offer HIPAA compliance, we did select frameworks

that would allow us to offer it in the future, albeit with a bit of extra funding.

• ISO 62304 (Medical Device Software): Outlines software that is a medical device, software that is used in

the production of a medical device, or software that is embedded in a medical device. In our case, the second

and third apply to EMT Vision, given that we serve patients on calls. This gave us a framework to design our

architecture with.

• ISO 13485 (Quality Control): Our headset is intended to be used in the field. While it will not be deployed

this year, this standard should still be followed so that the project may be ready to deploy as soon as possible.

50

• ISO 13482: Outlines safety requirements for personal care robots (provided we are engineering an AR headset,

this does indeed apply). Had we removed AI from the project, we could potentially get around this ISO standard,

but due to our reliance on GPT-4o for populating data forms, we had to abide by several safety standards from

ISO 13482.

• ISO/IEC 27001: Details information security management (for security and privacy). This revolves around

ensuring patient data remains safe, secure, and confidential, which was a primary factor in preventing us from

conducting field testing.

10.2.3 HIPAA

HIPAA establishes standards that protect confidential patient information, ensuring each individual has privacy, main-

tains trust with healthcare professionals, and removes the risk of disclosing patient details without consent. Due to our

project serving as a technology in the medical field, we must adhere to HIPAA’s strict patient confidentiality proce-

dures and standards, ensuring that all sensitive and identifying information is only disclosed to those operating on the

patient.

To ensure HIPAA compliance, an auditor along with secure certified data storage must be present, both of which

cost a plentiful sum. Due to our lack of funding to pay for a full-time salary, we did not opt to implement HIPAA

compliance, but we did select frameworks that would allow for us to implement it in the future with minimal effort.

Additional considerations for HIPAA compliance would include censoring patient data upon AI input and ensuring

that all data is encrypted and decrypted securely upon being transmitted.

51

Chapter 11

Societal Issues

11.1 Ethical

Within our project, the usage of AR headsets, particularly with audio recording capabilities, offers a variety of positive

improvements to EMS communication. However, such features also pose several significant ethical concerns regarding

patient and user privacy that must be carefully addressed.

11.1.1 Patient Privacy and Confidentiality

The primary ethical concern is the protection of patient privacy and the confidentiality of their data. HIPAA, along with

other public protection safeguards, restricts the access and acquisition of patient data. Recording paramedic-patient

interactions could lead to unintended privacy breaches, particularly if audio data is stored insecurely or accessed

without proper authorization. Ensuring data is kept locally and that uploaded data is adjusted to maintain patient

anonymity are critical measures to mitigate these risks. In particular, we retain all audio recordings locally on the

device, and dissect JSON conversation transcripts of names and other identifiers, ensuring patient privacy.

11.1.2 Informed Consent

Naturally, the inclusion of recorded data poses ethical challenges regarding receiving the appropriate consent from the

sources involved. Often in emergency scenarios, patients may be unconscious or disoriented, restricting their ability

to reasonably provide consent. Moreover, in high-pressure situations, paramedics may not have the time or ability

to explain the recording process. Even in non-emergency circumstances, the headset does not automatically notify

people around it or the paramedic when it is recording, so patients may not be aware their data is being acquired. To

address this issue, it is imperative to provide indicators to identify, for clarity, when the device is actively recording

the paramedic and others involved. We have considered an external LED “active recording” marker, as well as an icon

on the user’s HUD.

52

11.1.3 Ethical Responsibility of Data Usage

The usage and storage of recorded data present further considerations. The team must determine if the recordings

should be used solely for documentation and communication purposes, or if could they be leveraged in research.

Would there be an opportunity to ethically train machine learning with real patient interactions or is using even a

written transcript of the conversation ethically inappropriate? Ethical guidelines must be upheld to prevent misuse

of data and maintain the inherent trust between patients and EMS. If any data is analyzed, we will confirm that all

unique patient identifiers will be separated in compliance with HIPAA. Any data within the headset should be carefully

monitored to confirm temporary data is removed and that stored data does not pose reasonable security vulnerabilities

or potential data leaks.

11.2 Social

An incautious implementation of AR headset audio recording technology poses social risks to both paramedics and

the broader community.

11.2.1 Trust Between Patients and Paramedics

Patients place immense trust in paramedics to provide immediate, accurate medical care. The introduction of audio

recording may be perceived as intrusive, especially if patients are not aware of what data is being acquired and the

limited capacity it is used. While some may view it as an enhancement to patient care and accountability, others may

see it as an infringement on personal privacy. Patients are often in vulnerable, traumatic states and may not want this

view of themselves to be retained without prior consent. California is incredibly diverse, containing millions from

different cultures, backgrounds, and communities, all of which may have altering impressions towards AR usage in

an emergency. Additionally, if the headset is only available in wealthier districts and communities, it could widen the

disparity in healthcare between higher and lower economic areas. If not acknowledged, this could erode the existing

positive rapport between healthcare providers and patients. Transparency in communication about the purpose and

benefits of recording is crucial to maintaining public trust. Stored data should be filtered of personal details and kept

highly secure, as any breach of data could jeopardize the entire public trust in EMS. In addition, the inclusion of an

AR device worn on a paramedic’s face could reduce the sense of personalized care or human interaction. Thankfully,

the HoloLens 2 is low-profile relative to comparable hardware on the market and enables users to engage intimately

with eye contact.

11.2.2 Workforce Acceptance and Adaptation

The use of AR technology in EMS may be met with resistance from paramedics due to concerns over increased

surveillance, performance evaluation, or legal liability. Paramedics we met with expressed this, although the project’s

53

focus on capturing audio as opposed to video helped reduce these fears of department oversight. Still, the unease about

recording misuse as a means for disciplinary action will have to be overcome. Proper training, organizational support,

and clearly defined policies on how recordings will be used are essential to encourage adoption among EMS personnel.

Additionally, through exposure to the application, EMS will discover and hopefully appreciate the improvements to

communication and documentation.

11.3 Political

Government regulations and policies play a critical role in the restrictions and acceptable capabilities of AR headset

technology, especially in EMS.

11.3.1 Legislative Barriers

The legality of recording medical interactions varies by jurisdiction. Some states and counties require dual-party

consent for recording, while others allow single-party consent. Specifically, California requires all-party consent for

private conversations (i.e. within private domiciles or businesses), although this does not extend to interactions in

public. Further complications arise from the duration of data retention and whether there should be a simple means

for patients to request the deletion of their data. Ensuring compliance with local and national laws before deploying

this technology is essential.

11.3.2 Potential for Legal Challenges

The existence of recording devices in medical settings may lead to legal disputes, particularly concerning malpractice

claims and liability. Specifically, the question can be posed of who owns the recordings between the paramedics,

the EMS department, or the patient. Utilizing the ethical frameworks for the use and storage of recordings discussed

previously under Chapter 8.1: Ethical Considerations can help mitigate these risks.

11.4 Economic

The financial impacts on fire departments of developing, implementing, and maintaining our AR headset application

must be assessed.

11.4.1 Cost of Implementation

Deploying AR headsets across EMS units could involve significant costs, including potential hardware acquisition,

software development, and training programs. Within the organization, a cost-benefit analysis could be required to

justify the investment.

54

11.4.2 Financial Sustainability

Beyond the initial investment, ongoing costs such as device maintenance, IT infrastructure, and data storage must

be accounted for. Exploring funding options, including government grants and private-sector partnerships, may be

options to offset these expenses. Alternatively, departments may already have funding channels to devote to investing

in upcoming equipment, and ongoing costs could be relatively low, but departments would need to be convinced the

benefits outweigh initial as well as continued costs.

11.4.3 Potential for Cost Savings

While costly upfront, the technology could lead to financial savings in the long run by improving efficiency, reducing

paperwork, and minimizing medical errors. In addition, as AR headset hardware continues to become cheaper, more

efficient, and more compact, the cost of integrating AR capabilities will decrease.

11.5 Health and Safety

Ensuring the application’s use expands the safety of both patients and paramedics is fundamental.

11.5.1 Impact on Paramedic Performance

AR headsets must be designed to reduce a paramedic’s cognitive load. Poorly designed interfaces or excessive alerts

may distract and hinder rather than assist paramedics. Information panels must be unobstructed, and buttons and

menus should be quick and reliable to navigate. Paramedics should at all times be able to observe their surroundings

for potential dangers and preserve focus on the patient. Paramedics may also experience constant pressure from

being recorded and consequentially could undergo stress or altered behavior. These outcomes need to be mediated

considering a natural, calm demeanor is necessary for the paramedic to soothe the patient and instill confidence in

their ability.

11.5.2 Enhanced Documentation for Patient Safety

Accurate audio documentation could help reduce errors in medication administration, treatment protocols, and patient

handovers, ultimately improving patient safety by providing hospitals with optimized patient reports. However, if the

data is inconsistent or unreliable without an EMS proof-checking, it could increase errors, especially if paramedics

rely solely on or become too dependent on the technology.

11.6 Usability

To be effective, the technology must be easy for users to utilize, especially to avoid distractions or missteps as

paramedics provide aid to patients.

55

11.6.1 Intuitive Interface

The AR system should be simple to navigate in high-pressure situations. The layout is simply designed to focus on

crucial information, navigation buttons, and intuitive actions. The HoloLens 2 utilizes hand-tracking instead of con-

trollers, allowing users to grab, select, and drag panels akin to a smartphone, improving beginner usability. Navigating

to a specific section should be accessible through minimal clicks and the option to reduce or remove the HUD will be

seamless.

11.6.2 Minimal Training Requirement

The system should be designed for near-immediate adoption and only require simple training. Users should be able to

understand and navigate the application intuitively, needing at most a few initial hints or instructions. The goal is to

ensure that paramedics can operate the system effectively on their first use without extensive training, so instincts on

calls can enable the user to operate effectively without a notable cognitive impact.

11.6.3 Customization

Optimization is key to ensuring efficiency in a fast-paced medical environment. Paramedics should have the ability to

adjust the interface to suit their workflow, including options to move, scale, and minimize panels as needed. This level

of flexibility allows users to customize their experience based on personal preferences and situational requirements,

enhancing comfort, operational effectiveness, and overall satisfaction.

11.6.4 Hardware

The HoloLens 2 needs to offer reliable performance and security for the user. The hardware should be tested to ensure

it continues to function optimally under extended use or during prolonged calls. If the device’s internal battery is not

able to reliably last under simulated conditions, an additional solution such as an external battery pack may be needed

to allow usage throughout the day.

11.7 Compassion

An important aspect of engineering is developing solutions with awareness and sympathy towards the misfortune of

others. It is, as a result, the role of engineers to work with compassion, which was a reason our team was drawn to

the project. Paramedics face an array of obstacles when attempting to provide compassionate, empathetic care under

stressful conditions. By enhancing documentation and communication, we hope to alleviate some of the suffering in

our community among patients and those who serve them. Through this project, we hope to inspire further research

into improving the technology of EMS and reducing the stress from a naturally intense environment.

56

Chapter 12

Final Product

12.1 Differences Between Prototype and Finalized Project

In our initial prototype, EMT Vision solely consisted of an audio interpreter and interactive protocol display. While

complex in nature, we found ourselves to have more time—and resources—on our hands than originally perceived,

permitting us to develop additional features and upgrade user experience beyond the initial design for the project.

Further, we developed several new technology stacks and interactions between varying APIs and libraries, leading to

some stark differences between our initial prototypes and finalized product.

12.1.1 Technological and Design Differences

Within our initial design, we conceived an architecture for audio interpretation that consisted of Python-based scripts

sending and receiving HTTP requests to OpenAI’s GPT4o-mini and Whisper. However, upon the commencement of

development, we found that Unity posed integration troubles, and more severely, the HoloLens 2 prevented any usage

of Python scripts. This was a significant setback, sending us back to the drawing board, and leading us to revise our

architecture. From this, we proceeded to our currently used C#-based technology stack, comprised of GPT-4o and

Azure Speech Services (as Whisper does not run natively on C#).

Our prototypes for the interactive protocol display involved recreating the entire mobile app within the headset

and redesigning the procedure menu to be a set of buttons within a scrollable viewport. However, when it came

to implementing this feature, we found it not only redundant but hard to use on the headset, leading us to develop

our current system, which displays the official city PDFs, navigable through selective buttons. While this design is

somewhat similar to the prototype, we did not opt for a scrollable view; rather, we chose an iterative page menu.

Further, instead of writing each individual bullet point and treating it as a game object, we rendered checkboxes over

PDFs, improving format and accessibility for those already familiar with the protocol sheets.

57

12.1.2 Feature Differences

Within the early stages of prototyping our project, we outlined a few features that did not make it to production. One

of these, most notably, was the capability to present potential patient diagnoses through analyzing a live video feed.

While this technology certainly would have been impressive, we concluded that it would fall significantly short of

being revolutionary or impactful, mainly due to ethical and error concerns. Due to these, along with discussions with

local paramedics, we decided to eliminate this feature.

12.2 User Guide

Our technology was engineered with accessibility as a forefront priority, making it easy to navigate, read, and ana-

lyze patient data. Both the perspectives of the EMT and licensed medical professionals offer simple user interfaces,

permitting for efficient usage.

12.2.1 Headset Manual

To begin with the Holo Lens 2 headset, log in with the provided credentials and launch the EMT Vision app. From

here, you will be prompted with several menus, of which we shall elaborate how to navigate.

BLS/ALS Protocols Menu

The first menu, the BLS/ALS Protocols Menu, showcases various procedures and protocols provided by Santa Clara

County. These would be the same protocols visible within the SCC EMT app, and as such, navigating this menu is

identical to the structure you are already familiar with. To begin, please select a broad category of the patient being

treated (adult, pediatric), then select a scenario. If your selection does not appear on the menu, please utilize our up

and down arrow buttons to navigate through multiple pages.

Once selected, the protocol for that scenario will appear on the right, being movable through a ”pinch-and-drag”

motion, utilizing the hand. Simply grab and place the object where you would like it as if you were physically

interacting with it. If the protocol has multiple pages, similarly to the menu, please utilize our left and right arrow keys

to move through the pages. You will also view checkboxes next to each bullet point. These are for you to track your

progress throughout a call and are intractable if you click on them through a tapping motion with a finger.

58

Figure 12.1: View of the Protocol Menu in Unity. The user can navigate through the protocols and their respective
PDFs using the labeled buttons on the left.

Audio Recording and Analysis

To initiate audio recording, simply ”tap” on the record button, visible on the left side of the user menu. This will

commence an active recording utilizing the on-board headset microphone, so be cautious so as to not accidentally

trigger this action. Once you have completed your call or wish to take a break, simply press the stop recording button,

at which point in time the full-length dialogue will be processed and sent to the patient dashboard. You will be able to

tell this is done from the patient data visibly rendering on the patient list, visible next to the record button.

If you wish to view patient data or resume recording for a patient, select the desired name from the list of patients,

at which point all recorded information will be visualized for you to view. To resume recording, press the record

button on the patient page to record specifically for this patient.

Figure 12.2: View of the primary menu in Unity. The left panel contains buttons for switching between patients while
the center panel is where the information from the recorded conversation with a patient will appear.

59

12.2.2 Patient Portal Manual

The Patient Portal is designed for medical professionals to operate at regional hospitals. To ensure patient confiden-

tiality and the security of information, please first sign in to your portal using Google’s OAuth process. You will be

prompted to sign in, at which point you may select your Google account. If your account has been approved, you may

view the patient dashboard.

On the dashboard, you will be able to view the number of patients and critical cases, along with a full list of all

recorded cases on the left-hand side. To view more information on the patient, click on their name. From here, you

may view vitals, patient identifying information, symptoms, medical history, and other general ePCR form data that

you may already be accustomed to.

Figure 12.3: The main dashboard of the Patient Portal

12.3 Next Steps

Now that we have developed a functional prototype of the headset, there are still steps to be taken before we can get

this technology into use. For one, the greatest barrier we will face will be in approval from the health department.

This often slows progress, such as their very late adoption of digital mapping, where regulatory approval meant that

they were stuck using paper maps when the technology was available. We would also have to consider how to get the

necessary hardware, AR glasses, purchased by the fire departments, so that they can run our application. In addition,

we have considered additional features that could be implemented in the future.

12.3.1 Health Department Approval

Because the application would collect protected health information, HIPAA approval is required to prove that it is

handled with care. This is an extensive regulatory barrier to overcome. However, a manageable solution could be to

60

use AI models that have been pre-approved. In this instance, we would be able to justify that so long as our application

is not sharing this data, and only acting as a front end to these applications, then getting re-approved is unnecessary.

This would save a great deal of effort and we would only have to change our application to use variations of the models

we have already implemented, such as using BastionGPT, which is a HIPAA approved version of the natural language

processing model that we used, ChatGPT. We could also use Amazon Textract, a HIPAA approved vision model that

would work in place of Azure Document Intelligence. We did not use these pre-approved models for the sake of

affordability and convenience in developing our prototype, but this transition would take negligible effort compared

to producing a new model and trying to get it accepted. The hardware, the Hololens 2 has already been approved by

the FDA and the FCC as being safe for consumers to use without interrupting protected communication bandwidths,

making it trustworthy in the eyes of the department.

12.3.2 Distributable Hardware

The Hololens 2 is no longer in production nor is it distributed by Microsoft. This means that in order to purchase

them, fire departments would have to source in bulk from licensed distributors or source used headsets online. This

makes it more affordable than we initially projected, but it is not a realistic hardware option for the long term. As

a result, we would have to consider other options for an AR headset that runs the application. An alternative could

be the XREAL Air glasses, an Android headset that can be purchased for $400. This would be easy to port to our

project because Android XR apps are also built in Unity and would simply need different compilation settings. For

maximizing affordability, we could also consider developing our own hardware, as Unity can be compiled for OpenXR

which is an open source XR operating system that can be used for ARM SoC embedded systems. There would be

limitations to this route. For one, developing a display system comparable to those done by competitors in industry is

incredibly difficult. The Hololens 2 uses highly complex MEMS systems with state of the art waveguides which enable

it to achieve an ultra high resolution at high lumens. This is what makes the display so visible, even with daylight

shining through the glasses. When developing our own, we might aim to use a microOLED waveguide display system,

but this would be limited to fewer lumens and a lower resolution. On top of this, we would then have to go through

the process of getting FCC and FDA approval, making it a less realistic option.

12.4 Future Features

The functional prototype that we have created has all of the key features that we set out to implement. Besides

these key features, there are others that could be added in the future to continue improving the project. This section

outlines these potential features and improvements. These features were not included in the prototype due to various

constraints, the most prominent among them being time, but could greatly benefit usability and overall impact. In

future iterations of this project, we would like to include some of these features if possible.

61

12.4.1 Elevator Rescue

During our ride along visits with Santa Clara EMTs, they informed us that elevator rescues present a unique challenge

for them. During these calls, reaching individuals who are trapped inside the elevator is a lengthy and difficult process.

Since they do not have training for operating elevators, they often have to wait for a specialist to come and fix the

elevator before they can reach the people inside. This can greatly increase how long the call takes, and can be an even

bigger problem if someone inside the elevator is having a medical emergency.

A potential feature that was suggested was a scanner of sorts that could identify the type of elevator and display

the relevant information about it. This would then allow those on the call to reach anyone trapped inside the elevator

faster, reducing the time of the call and allowing them to treat those inside if they are having a medical emergency.

12.4.2 Apartment Mapping

To quickly identify apartments within large complexes, stations have maps of the buildings in their local area, and even

their own keys to provide expedited access. An ideal feature would be to have the necessary map displayed when they

arrive on scene, so that they can save time searching for the right map, reducing preparation work and overall stress.

We chose not to develop this feature as it would likely require an additional layer of regulatory approval given that the

project would be sourcing location data. However, by collaborating with the department, this would easily be feasible

and could even be integrated with their current mapping systems.

12.4.3 Equipment Checklist

At the start of each day, it is the responsibility of the firefighters to check and test all of their equipment. A checklist

feature to record their actions could increase their confidence in the equipment they use to ensure that the firefighters

have taken the necessary steps to prepare for a call. In the mornings, they are always tired after being woken up for

calls throughout the night, so any technology that can help them remember everything would reduce the risk that they

might make a tired mistake that would be detrimental on a call. As well, paramedics on an Ambulance are required to

complete a form called ”check offs” daily to review all equipment and refill all used disposables from previous calls.

Paramedics informed us that if this list were viewable on the HUD, it could notably streamline this process, especially

for newer paramedics or EMTs who are still becoming familiar with county procedures, storage expectations, and

supplies. A further improvement within this could be expanded information about all the equipment, how to use

medication and expected dosages, and visual guides for where exactly to locate or store instruments.

12.4.4 Diagnosis

Computer vision models are already used to help radiologists and other hospital specialists identify diagnoses that

could be difficult to spot by eye. When combined with transcription interpretation of the scene, a camera diagnosis

62

model might help EMTs recognize health issues with visual reasoning. On top of this, computer vision diagnosis could

also be paired with the AR format to provide first responders with visual guides of patient anatomy and emergency

medical operations.

12.4.5 Hazard Detection

First responders regularly work in hazardous environments. An example of this is that traffic accidents are the second

leading cause of firefighter deaths. The combination of AR with computer vision could help warn first responders of

potentially life threatening hazards that they might be overlooking in a high stress situation.

12.4.6 Missing Field Errors

The current databasing technology that the Santa Clara Fire Department use is ImageTrend. The primary reason this

application was preferred by the department was that it does not allow captains to leave a report unresolved. As a

result, all information about a scenario is recorded, which ensures that should the department have to go to court, then

information from the case never missing.

12.4.7 Government ID Scanner

Currently, some ePCRs, such as the one used by Santa Clara County, feature the capability to scan the bar code on

government IDs and automatically parse that information, such as name, age, height, and weight. Our team inquired

with a company to implement similar functionality into our application, but it ultimately did not fit into our time frame.

Nonetheless, allowing paramedics to merely look at an ID and automatically retain key identifying characteristics

would be a beneficial quality-of-life feature.

12.4.8 Hospital Chart

Another element we plan to include in perspective iterations of our project would be a chart of local hospitals. Cur-

rently, the ambulance contains a paper chart of all local hospitals, their specialties, and their phone numbers. The

patient’s preferred hospital is generally chosen, although for code three (time-sensitive emergencies) they will choose

the closest that specializes in that condition. The paramedic is expected to have these classifications memorized, but,

as with multiple other aspects of the application, it would be beneficial to have access to quickly cross reference,

perhaps even by automatically suggesting the optimal hospitals based on distance, patient symptoms, and severity of

situation.

12.4.9 Medication Guidance Interface

This feature would aim to provide first responders with an easily accessible resource for county-approved medication

protocols. While this information is already available on county policy pages within their iPads, such extensive doc-

63

uments are not as conducive to optimized, reliable retrieval for specific scenarios. This would include detailed infor-

mation for each medication, including indications, contraindications, and administration routes to enable confirmation

of correct procedures, especially considering mandated policies update at least weekly. As well, the interface would

clearly display standard dosage recommendations, including initial and secondary dose quantity and time frame based

on patient factors such as age, weight, or clinical condition. Finally, the paramedic could be presented with medication

usage standards based on specific medical scenarios, helping reduce cognitive load for uncommon scenarios.

64

Chapter 13

Conclusion

Altogether, our project highlights the potential of combining extended reality and artificial intelligence by applying it

to a real-world scenario. The adoption of technology among emergency response teams is notably slow, resulting in

unnecessary stress for first responders and patient care not reaching its full potential due to underutilized resources. By

researching, designing, developing, and testing this prototype, our project proves that a hands-free augmented reality

device could serve a currently under-addressed role in available first responder equipment, and we hope this prototype

inspires further development in this technology to improve our community.

During the last year dedicated to this project, our team has dramatically grown in our understanding of emergency

medical technology, AI and AR development, the role and operation of first responders, and firsthand experience

tailoring a product to stakeholders through testing, feedback, and timely adjustments. Additionally, we were forced

to navigate development constraints such as interdisciplinary coordination, achieving project expectations, balancing

technological feasibility, and adjusting to optimize our team’s personnel. Although our development cycle was ul-

timately limited, we were satisfied with how we effectively delivered and met the expectations of Santa Clara Fire

Department.

Two critical hurdles, the extensive costs to achieve HIPAA approval and the visual limitations of current AR glasses

hardware, are obstacles for this project’s viability in the near future. In time, however, we wholeheartedly believe that

the hardware will become more practical, affordable, and subtle in design, enabling EMT Vision to be a deployable,

scalable solution. If our team continues this project, we believe integrating this technology into real paramedic scenar-

ios would streamline workflows, optimize information acquisition and exchange, and reduce cognitive load. Moreover,

some features initially envisioned for the project, such as automatic language translation and cloud-based data analyt-

ics, could be reintroduced in future development, further solidifying EMT Vision as a comprehensive tool of everyday

first responders.

Ultimately, EMT Vision underscores a persistent struggle within emergency response, which for decades has

left first responders with limited access to modern, supportive technology designed to aid them, rather than just the

65

patient, through the pressures and responsibilities of saving lives. We hope this small yet significant step in exploring

how engineers and emerging technologies will inspire future innovation in this essential field, and one day, better

emergency care for those in need.

66

Chapter 14

Acknowledgments

We are so grateful to have had the opportunity to work directly with the Santa Clara Fire Department and see firsthand

the vital work they do for our community. We were welcomed to the stations to meet with them personally, and we

could never have completed this project without their support. It is easy to take for granted the heroes who show up

when we need them most — we appreciate that we had the chance to learn from them and are inspired to continue

building solutions that can help.

Thank you to the Santa Clara University School of Engineering, who allocated the time and resources for us to

be able to collaborate on this project. Most notably, this includes access to work on the Hololens 2, an expensive and

new piece of technology that we could not have accessed without them. Furthermore, thank you to our professors who

have motivated and inspired us throughout these four years, especially Dr. Ramamoorthy, who advised and mentored

us across the duration of this project.

67

Chapter 15

References

68

Bibliography

[1] Agata Gawron Aneta Grochowska and Iwona Bodys-Cupak. Stress-inducing factors vs. the risk of occupational

burnout in the work of nurses and paramedics, 2022. Accessed: 2024-08-19.

[2] Hanae Armitage. Stanford medicine uses augmented reality for real-time data visualization during surgery, 2024.

Accessed: 2025-02-21.

[3] Philip Braun. Virtual reality for immersive multi-user firefighter training scenarios, 2024. Accessed: 2025-02-21.

[4] Sasha Brodsky. First responders ar mr solutions for frontline emergency professionals, 2024. Accessed: 2025-

02-21.

[5] US Census Bureau. 2020 census results, 2024. Accessed: 2025-04-23.

[6] Julie Cooper. Virtual reality training helps first responders, 2024. Accessed: 2025-02-21.

[7] Ben Coxworth. Japanese emts to start using ar glasses while transporting patients, 2024. Accessed: 2025-02-21.

[8] Dr. Mathias Unberath Dr. Nick Dalesio, Dr. Laeben Lester. Vital monitor and id detection through machine

vision for improving ems communication efficiency, 2024. Accessed: 2025-02-21.

[9] Esteva et al. Dermatologist-level classification of skin cancer with deep neural networks, 2017. Accessed:

2025-04-23.

[10] Finget. Augmented reality in the healthcare industry: practical use cases, 2024. Accessed: 2025-02-21.

[11] Glassdoor. How much does a firefighter make in santa clara, ca?, 2024. Accessed: 2025-01-26.

[12] Andrzej Grabowski. Practical skills training in enclosure fires: An experimental study with cadets and firefighters

using cave and hmd-based virtual training simulators, 2024. Accessed: 2025-02-21.

[13] Andreas Hoell, Eirini Kourmpeli, and Harald Dressing. Work-related posttraumatic stress disorder in paramedics

in comparison to data from the general population of working age: A systematic review and meta-analysis.

Frontiers in Public Health, 11, 2023.

69

[14] Evan M. McKay Jeremy J. Taliercio Scott D. White Blair J. Woodbury Mark A. Sandefur Jeffrey D. Ho, Donald

M. Dawes and James R. Miner. Effect of body-worn cameras on ems documentation accuracy: A pilot study.

Prehospital Emergency Care, 21(2):263–271, 2017. PMID: 27636021.

[15] Kim Carol Maligalig. Machine vision system of emergency vehicle detection system using deep transfer learning,

2024. Accessed: 2025-02-21.

[16] Ludmila Marcinowicz, Jerzy Konstantynowicz, and Cezary Godlewski. Patients’ perceptions of gp non-verbal

communication: a qualitative study. British Journal of General Practice, 60(571):83–87, 2010.

[17] Mical Adamski Marta Dunajko. Augmented reality in the healthcare industry: practical use cases, 2024. Ac-

cessed: 2025-02-21.

[18] Microsoft Docs. Unity development overview - mixed reality, 2024. Accessed: 2025-04-22.

[19] Harbil Arregui Others. An augmented reality framework for first responders: the respond-a project approach,

2024. Accessed: 2025-02-21.

[20] Kelly Peng. The future is here: Ems training with augmented reality, 2024. Accessed: 2025-02-21.

[21] N Raveendran. Future of smart firefighting, 2024. Accessed: 2025-02-21.

[22] Matthew Reardon, Raquel Abrahams, Liz Thyer, and Paul Simpson. Review article: Prevalence of burnout in

paramedics: A systematic review of prevalence studies. Emergency Medicine Australasia, 32(2):182–189, 2020.

[23] M Short and S Goldstein. EMS Documentation. StatPearls [Internet]. StatPearls Publish-

ing, Treasure Island, FL, updated 2022 sep 26 edition, September 2022. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK448107/.

[24] Data USA. Santa clara, ca: Census, 2023. Accessed: 2025-04-23.

[25] Voxel51. Evaluating ml models for computer vision, 2024. Accessed: 2025-02-21.

70

Appendix A

Code Files

A.1 auth callback.ts

1 import { createRouteHandlerClient } from "@supabase/auth-helpers-nextjs"
2 import { cookies } from "next/headers"
3 import { NextResponse } from "next/server"
4 import type { NextRequest } from "next/server"
5

6 export async function GET(request: NextRequest) {
7 const requestUrl = new URL(request.url)
8 const code = requestUrl.searchParams.get("code")
9

10 // Check if environment variables are set
11 const supabaseUrl = process.env.NEXT_PUBLIC_SUPABASE_URL
12 const supabaseAnonKey = process.env.NEXT_PUBLIC_SUPABASE_ANON_KEY
13

14 if (!supabaseUrl || !supabaseAnonKey) {
15 // Redirect to an error page or back to login with an error parameter
16 return NextResponse.redirect(new URL("/login?error=missing_env_vars", request.url))
17 }
18

19 if (code) {
20 try {
21 const cookieStore = cookies()
22 const supabase = createRouteHandlerClient({ cookies: () => cookieStore })
23

24 await supabase.auth.exchangeCodeForSession(code)
25 } catch (error) {
26 console.error("Error exchanging code for session:", error)
27 return NextResponse.redirect(new URL("/login?error=auth_error", request.url))
28 }
29 }
30

31 // URL to redirect to after sign in process completes
32 return NextResponse.redirect(new URL("/dashboard", request.url))
33 }

A.2 callback.ts

1 import { createRouteHandlerClient } from ’@supabase/auth-helpers-nextjs’
2 import { cookies } from ’next/headers’
3 import { NextResponse } from ’next/server’
4

5 export async function GET(request: Request) {
6 const requestUrl = new URL(request.url)
7 const code = requestUrl.searchParams.get(’code’)
8

9 if (code) {

71

10 const supabase = createRouteHandlerClient({ cookies })
11 await supabase.auth.exchangeCodeForSession(code)
12 }
13

14 // URL to redirect to after sign in process completes
15 return NextResponse.redirect(‘${requestUrl.origin}/dashboard ‘)
16 }

A.3 dashboard.tsx

1 "use client"
2

3 import { useEffect , useState } from "react"
4 import { Card, CardContent , CardDescription , CardHeader , CardTitle } from "@/components/ui/card"
5 import { AlertCircle , Clock, User, Baby, User2, UserCog } from "lucide-react"
6 import { ScrollArea } from "@/components/ui/scroll-area"
7 import { Badge } from "@/components/ui/badge"
8 import { formatMedicalCondition } from "@/utils/format"
9

10 interface DashboardStats {
11 totalPatients: number
12 criticalCases: number
13 recentPatients: number
14 recentPatientsList: any[]
15 demographicStats?: {
16 ageRanges: {
17 pediatric: number // 0-17
18 youngAdult: number // 18-39
19 middleAge: number // 40-64
20 senior: number // 65+
21 }
22 gender: {
23 male: number
24 female: number
25 other: number
26 }
27 averageAge: number
28 }
29 }
30

31 // Helper function to get acuity badge variant - matching sidebar
32 function getAcuityBadgeVariant(acuity: string | undefined): "default" | "secondary" | "

destructive" | "outline" {
33 if (!acuity) return "default"
34 const acuityLower = acuity.toLowerCase()
35 if (acuityLower.includes("critical") || acuityLower.includes("severe")) {
36 return "destructive"
37 } else if (acuityLower.includes("moderate")) {
38 return "secondary"
39 } else if (acuityLower.includes("minor") || acuityLower.includes("low")) {
40 return "outline"
41 }
42 return "default"
43 }
44

45 // Helper function to categorize age
46 function categorizeAge(age: string | undefined): string {
47 if (!age) return "other"
48 const ageNum = parseInt(age)
49 if (isNaN(ageNum)) return "other"
50

51 if (ageNum < 18) return "pediatric"
52 if (ageNum < 40) return "youngAdult"
53 if (ageNum < 65) return "middleAge"
54 return "senior"
55 }
56

72

57 export default function Dashboard() {
58 const [stats, setStats] = useState<DashboardStats | null>(null)
59 const [loading, setLoading] = useState(true)
60

61 useEffect(() => {
62 async function fetchStats() {
63 try {
64 const response = await fetch(’/api/dashboard/stats’)
65 const data = await response.json()
66 console.log(’Dashboard received data:’, data)
67

68 // Calculate demographic stats
69 const demographicStats = {
70 ageRanges: {
71 pediatric: 0,
72 youngAdult: 0,
73 middleAge: 0,
74 senior: 0
75 },
76 gender: {
77 male: 0,
78 female: 0,
79 other: 0
80 },
81 averageAge: 0
82 }
83

84 let totalAge = 0
85 let validAgeCount = 0
86

87 data.recentPatientsList?.forEach((patient: any) => {
88 // Categorize age
89 const ageCategory = categorizeAge(patient.Age)
90 demographicStats.ageRanges[ageCategory as keyof typeof demographicStats.ageRanges]++
91

92 // Calculate average age
93 const ageNum = parseInt(patient.Age)
94 if (!isNaN(ageNum)) {
95 totalAge += ageNum
96 validAgeCount++
97 }
98

99 // Count gender
100 const gender = patient.Gender?.toLowerCase() || "other"
101 if (gender === "male" || gender.includes(’m’)) {
102 demographicStats.gender.male++
103 } else if (gender === "female" || gender.includes(’f’)) {
104 demographicStats.gender.female++
105 } else {
106 demographicStats.gender.other++
107 }
108 })
109

110 demographicStats.averageAge = validAgeCount > 0 ? Math.round(totalAge / validAgeCount) :
0

111

112 setStats({ ...data, demographicStats })
113 } catch (error) {
114 console.error(’Error fetching dashboard stats:’, error)
115 } finally {
116 setLoading(false)
117 }
118 }
119

120 fetchStats()
121 // Poll for updates every 5 seconds to match sidebar
122 const interval = setInterval(fetchStats , 5000)
123 return () => clearInterval(interval)

73

124 }, [])
125

126 if (loading) {
127 return <div>Loading...</div>
128 }
129

130 // Debug render
131 console.log(’Dashboard rendering with stats:’, stats)
132

133 const totalGenderCount = Object.values(stats?.demographicStats?.gender || {}).reduce((a, b) =>
a + b, 0)

134

135 return (
136 <div className="p-5 h-full">
137 <h1 className="text-3xl font-bold tracking -tight mb-6">Dashboard </h1>
138

139 <div className="grid gap-6 h-[calc(100vh-8rem)]">
140 <div className="grid gap-4 md:grid-cols-2">
141 <Card>
142 <CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
143 <CardTitle className="text-sm font-medium tracking -tight">Critical Cases</CardTitle

>
144 <AlertCircle className="h-4 w-4 text-destructive" />
145 </CardHeader >
146 <CardContent >
147 <div className="text-2xl font-bold tracking -tight text-red-700">{stats?.

criticalCases || 0}</div>
148 </CardContent >
149 </Card>
150

151 <Card>
152 <CardHeader className="flex flex-row items-center justify-between space-y-0 pb-2">
153 <CardTitle className="text-sm font-medium tracking -tight">Patients Today</CardTitle

>
154 <Clock className="h-4 w-4 text-muted-foreground" />
155 </CardHeader >
156 <CardContent >
157 <div className="text-2xl font-bold tracking -tight">{stats?.recentPatients || 0}</

div>
158 </CardContent >
159 </Card>
160 </div>
161

162 <div className="grid gap-4 md:grid-cols-2 h-[calc(100%-8rem)]">
163 <Card className="col-span-1 flex flex-col">
164 <CardHeader >
165 <CardTitle className="text-lg font-bold tracking -tight">Recent Patients </CardTitle >
166 <CardDescription >Patients admitted in the last 24 hours</CardDescription >
167 </CardHeader >
168 <CardContent className="flex-1 p-0">
169 <ScrollArea className="h-full px-6">
170 {stats?.recentPatientsList && stats.recentPatientsList.length > 0 ? (
171 <div className="space-y-2">
172 {stats.recentPatientsList.map((patient) => (
173 <div key={patient.PatientID} className="flex items-center justify-between p

-2 hover:bg-muted/50 rounded-lg">
174 <div className="flex-1 min-w-0">
175 <p className="font-medium truncate">{patient.PatientName}</p>
176 <p className="text-sm text-muted-foreground truncate">
177 {patient.Age} years {patient.Gender}
178 </p>
179 </div>
180 <Badge variant={getAcuityBadgeVariant(patient.Severity)}>
181 {formatMedicalCondition(patient.Severity)}
182 </Badge>
183 </div>
184))}
185 </div>

74

186) : (
187 <div className="p-4 text-center text-muted-foreground">No recent patients </div>
188)}
189 </ScrollArea >
190 </CardContent >
191 </Card>
192

193 <Card>
194 <CardHeader >
195 <CardTitle className="text-lg font-bold tracking -tight">Today’s Demographics </

CardTitle >
196 <CardDescription >Patient age and gender distribution </CardDescription >
197 </CardHeader >
198 <CardContent >
199 <div className="space-y-6">
200 <div className="grid grid-cols-2 gap-4">
201 <div className="flex items-center space-x-2">
202 <Baby className="h-4 w-4 text-pink -500" />
203 <div>
204 <p className="text-sm font-medium">Pediatric (0-17)</p>
205 <p className="text-2xl font-bold">{stats?.demographicStats?.ageRanges.

pediatric || 0}</p>
206 </div>
207 </div>
208 <div className="flex items-center space-x-2">
209 <User2 className="h-4 w-4 text-blue -500" />
210 <div>
211 <p className="text-sm font-medium">Adult (18-64)</p>
212 <p className="text-2xl font-bold">
213 {(stats?.demographicStats?.ageRanges.youngAdult || 0) +
214 (stats?.demographicStats?.ageRanges.middleAge || 0)}
215 </p>
216 </div>
217 </div>
218 <div className="flex items-center space-x-2">
219 <UserCog className="h-4 w-4 text-purple -500" />
220 <div>
221 <p className="text-sm font-medium">Senior (65+)</p>
222 <p className="text-2xl font-bold">{stats?.demographicStats?.ageRanges.

senior || 0}</p>
223 </div>
224 </div>
225 <div className="flex items-center space-x-2">
226 <User className="h-4 w-4 text-green -500" />
227 <div>
228 <p className="text-sm font-medium">Avg. Age</p>
229 <p className="text-2xl font-bold">{stats?.demographicStats?.averageAge ||

0}</p>
230 </div>
231 </div>
232 </div>
233

234 <div className="space-y-2">
235 <div className="flex justify-between text-sm">
236 Gender Distribution
237 </div>
238 <div className="grid grid-cols-2 gap-4">
239 <div className="space-y-1">
240 <div className="flex justify-between text-sm">
241 Male
242 {stats?.demographicStats?.gender.male || 0}
243 </div>
244 <div className="h-2 bg-muted rounded-full overflow -hidden">
245 <div
246 className="h-full bg-blue -500 transition -all duration -500 ease-out"
247 style={{
248 width: ‘${((stats?.demographicStats?.gender.male || 0) /

totalGenderCount) * 100}%‘

75

249 }}
250 />
251 </div>
252 </div>
253 <div className="space-y-1">
254 <div className="flex justify-between text-sm">
255 Female
256 {stats?.demographicStats?.gender.female || 0}
257 </div>
258 <div className="h-2 bg-muted rounded-full overflow -hidden">
259 <div
260 className="h-full bg-pink -500 transition -all duration -500 ease-out"
261 style={{
262 width: ‘${((stats?.demographicStats?.gender.female || 0) /

totalGenderCount) * 100}%‘
263 }}
264 />
265 </div>
266 </div>
267 </div>
268 </div>
269 </div>
270 </CardContent >
271 </Card>
272 </div>
273 </div>
274 </div>
275)
276 }

A.4 layout.tsx

1 import type React from "react"
2 import "@/app/landing.css"
3 import { ThemeProvider } from "@/components/theme-provider"
4 import { Inter } from "next/font/google"
5

6 // Load Inter font - Apple-like typography
7 const inter = Inter({
8 subsets: ["latin"],
9 variable: "--font-inter",

10 display: "swap",
11 })
12

13 export const metadata = {
14 title: "EMT Vision - Advanced Emergency Medical Technology",
15 description: "Empowering first responders with cutting-edge technology for emergency medical

services.",
16 generator: ’v0.dev’
17 }
18

19 export default function RootLayout({
20 children ,
21 }: Readonly <{
22 children: React.ReactNode
23 }>) {
24 return (
25 <html lang="en" suppressHydrationWarning className={‘${inter.variable}‘}>
26 <body className={inter.className}>
27 <ThemeProvider attribute="class" defaultTheme="system" enableSystem

disableTransitionOnChange >
28 {children}
29 </ThemeProvider >
30 </body>
31 </html>
32)
33 }

76

34

35

36 import ’./globals.css’

A.5 login.tsx

1 "use client"
2 import Link from "next/link"
3 import { Button } from "@/components/ui/button"
4 import { Card, CardContent , CardDescription , CardHeader , CardTitle } from "@/components/ui/card"
5 import { createClientComponentClient } from ’@supabase/auth-helpers-nextjs’
6 import { useRouter } from ’next/navigation’
7 import { AuthButton } from "@/components/auth-button";
8 import { FaGoogle } from "react-icons/fa";
9 import { Footer } from "@/components/footer"

10

11 export default function LoginPage() {
12 const router = useRouter()
13 const supabase = createClientComponentClient()
14

15 const handleGoogleLogin = async () => {
16 try {
17 const { data, error } = await supabase.auth.signInWithOAuth({
18 provider: ’google’,
19 options: {
20 redirectTo: ‘${window.location.origin}/auth/callback ‘
21 }
22 })
23

24 if (error) throw error
25 } catch (error) {
26 console.error(’Error logging in with Google:’, error)
27 }
28 }
29

30 return (
31 <div className="flex min-h-screen flex-col">
32 <div className="flex-1 flex items-center justify-center bg-background">
33 <div className="absolute top-4 left-4">
34 <Link href="/" className="text-sm text-muted-foreground hover:text-primary transition -

colors">
35 Return to Home
36 </Link>
37 </div>
38 <Card className="w-[350px]">
39 <CardHeader className="space-y-1">
40 <CardTitle className="text-2xl font-bold text-center">Welcome </CardTitle >
41 <CardDescription className="text-center">
42 Sign in to access the EMT Vision Dashboard
43 </CardDescription >
44 </CardHeader >
45 <CardContent >
46 <div className="grid gap-4">
47 <AuthButton
48 provider="google"
49 label="Continue with Google"
50 icon={<FaGoogle className="mr-2 h-4 w-4" />}
51 onClick={handleGoogleLogin}
52 />
53 </div>
54 </CardContent >
55 </Card>
56 </div>
57 <Footer />
58 </div>
59)
60 }

77

A.6 patient.ts

1 import { supabase } from "@/utils/supabase/server"
2 import { NextResponse } from "next/server"
3 export const dynamic = ’force-dynamic’;
4

5 export async function GET(request: Request) {
6 const { searchParams } = new URL(request.url)
7 const patientId = searchParams.get(’id’)
8

9 if (!patientId) {
10 return NextResponse.json({ error: ’Patient ID is required’ }, { status: 400 })
11 }
12

13 const { data, error } = await supabase
14 .from("PatientData")
15 .select("*")
16 .eq(’PatientID’, patientId)
17 .order(’Time’, { ascending: false })
18

19 if (error) {
20 return NextResponse.json({ error: error.message }, { status: 500 })
21 }
22

23 return NextResponse.json(data)
24 }

A.7 patient.tsx

1 "use client"
2

3 import { useState, useEffect } from "react"
4 import { useParams } from "next/navigation"
5 import { Card, CardContent , CardHeader , CardTitle } from "@/components/ui/card"
6 import { Tabs, TabsContent , TabsList, TabsTrigger } from "@/components/ui/tabs"
7 import { Badge } from "@/components/ui/badge"
8 import { Button } from "@/components/ui/button"
9 import { Separator } from "@/components/ui/separator"

10 import {
11 Activity ,
12 AlertCircle ,
13 Clipboard ,
14 FileText ,
15 Heart,
16 Home,
17 Info,
18 Pill,
19 User,
20 Stethoscope ,
21 Thermometer ,
22 Droplets ,
23 TreesIcon as Lungs,
24 Brain,
25 Ambulance ,
26 Pencil,
27 AlertTriangle ,
28 CheckCircle2 ,
29 } from "lucide-react"
30 import { generatePatientPDF } from "@/utils/pdf-generator"
31 import { PatientEditModal } from "@/components/patient-edit-modal"
32 import { MedicationHistory } from "@/components/medication -history"
33 import { Patient } from "@/types/patient"
34 import { Select, SelectContent , SelectItem , SelectTrigger , SelectValue } from "@/components/ui/

select"
35 import { formatValue , formatList , formatName , formatAddress , formatMedicalCondition ,

formatMedicalConditions } from "@/utils/format"

78

36

37 // Helper function to get acuity badge color
38 function getAcuityBadgeVariant(acuity: string): "default" | "secondary" | "destructive" | "

outline" {
39 const acuityLower = acuity.toLowerCase()
40 if (acuityLower.includes("critical") || acuityLower.includes("severe")) {
41 return "destructive"
42 } else if (acuityLower.includes("moderate")) {
43 return "secondary"
44 } else if (acuityLower.includes("minor") || acuityLower.includes("low")) {
45 return "outline"
46 }
47 return "default"
48 }
49

50 // Add this helper function at the top level
51 function MissingField({ value, children }: { value: any, children: React.ReactNode }) {
52 return (
53
54 {children}
55
56)
57 }
58

59 export default function PatientPage() {
60 const params = useParams()
61 const [patient, setPatient] = useState<Patient | null>(null)
62 const [loading, setLoading] = useState(true)
63 const [error, setError] = useState<string | null>(null)
64 const [editModalOpen , setEditModalOpen] = useState(false)
65

66 // Function to fetch patient data
67 const fetchPatient = async () => {
68 try {
69 const response = await fetch(‘/api/patient?id=${params.id}‘)
70 const data = await response.json()
71

72 if (!response.ok) {
73 throw new Error(data.error || "Failed to fetch patients")
74 }
75

76 setPatient(data.length > 0 ? data[0] : null)
77 } catch (err) {
78 console.error("Caught error:", err)
79 setError(err instanceof Error ? err.message : "An unexpected error occurred")
80 } finally {
81 setLoading(false)
82 }
83 }
84

85 useEffect(() => {
86 // Initial fetch
87 fetchPatient()
88

89 // Set up polling interval (every 30 seconds)
90 const intervalId = setInterval(fetchPatient , 5000)
91

92 // Cleanup interval on component unmount
93 return () => clearInterval(intervalId)
94 }, [params.id])
95

96 const handlePatientUpdated = (updatedPatient: Patient) => {
97 setPatient(updatedPatient)
98 }
99

100 const getSeverityColor = (severity: string) => {
101 switch (severity.toLowerCase()) {
102 case "critical":

79

103 return "bg-red-500/10 text-red-500 hover:bg-red-500/20"
104 case "severe":
105 return "bg-orange -500/10 text-orange -500 hover:bg-orange -500/20"
106 case "moderate":
107 return "bg-yellow -500/10 text-yellow -500 hover:bg-yellow -500/20"
108 case "mild":
109 return "bg-green -500/10 text-green -500 hover:bg-green -500/20"
110 case "discharged":
111 return "bg-blue -500/10 text-blue -500 hover:bg-blue -500/20"
112 default:
113 return "bg-gray -500/10 text-gray -500 hover:bg-gray -500/20"
114 }
115 }
116

117 const getSeverityIcon = (severity: string) => {
118 switch (severity.toLowerCase()) {
119 case "critical":
120 return <AlertTriangle className="h-4 w-4" />
121 case "severe":
122 return <Activity className="h-4 w-4" />
123 case "moderate":
124 return <Heart className="h-4 w-4" />
125 case "mild":
126 return <CheckCircle2 className="h-4 w-4" />
127 case "discharged":
128 return <CheckCircle2 className="h-4 w-4" />
129 default:
130 return <Activity className="h-4 w-4" />
131 }
132 }
133

134 if (loading) {
135 return (
136 <div className="flex items-center justify-center h-[70vh]">
137 <div className="flex flex-col items-center">
138 <div className="animate-spin rounded-full h-12 w-12 border-b-2 border-primary mb-4"></

div>
139 <p className="text-muted-foreground">Loading patient information...</p>
140 </div>
141 </div>
142)
143 }
144

145 if (error) {
146 return (
147 <Card className="border-destructive bg-destructive/10 mx-auto max-w-3xl mt-8">
148 <CardHeader >
149 <CardTitle className="text-destructive flex items-center">
150 <AlertCircle className="mr-2 h-5 w-5" />
151 Error Loading Patient Data
152 </CardTitle >
153 </CardHeader >
154 <CardContent >
155 <p className="text-destructive">{error}</p>
156 <Button variant="outline" className="mt-4" onClick={() => window.location.href = ’/

dashboard’}>
157 Go Back
158 </Button>
159 </CardContent >
160 </Card>
161)
162 }
163

164 if (!patient) {
165 return (
166 <Card className="border-muted bg-muted/10 mx-auto max-w-3xl mt-8">
167 <CardHeader >
168 <CardTitle className="flex items-center">

80

169 <Info className="mr-2 h-5 w-5" />
170 Patient Not Found
171 </CardTitle >
172 </CardHeader >
173 <CardContent >
174 <p>The requested patient record could not be found.</p>
175 <Button variant="outline" className="mt-4" onClick={() => window.history.back()}>
176 Go Back
177 </Button>
178 </CardContent >
179 </Card>
180)
181 }
182

183 return (
184 <div className="container mx-auto py-6 px-4 max-w-7xl">
185 <div className="flex flex-col md:flex-row justify-between items-start md:items-center mb-6

gap-4">
186 <div>
187 <div className="flex items-center gap-2">
188 <h1 className="text-3xl font-bold">{formatName(patient.PatientName)}</h1>
189 </div>
190 <p className="text-muted-foreground mt-1">
191 {formatValue(patient.Age)} years {formatValue(patient.Gender)} Incident #{

formatValue(patient.IncidentNumber)}
192 </p>
193 </div>
194 <div className="flex gap-2">
195 <Button variant="outline" onClick={() => patient && generatePatientPDF(patient)}>
196 <FileText className="mr-2 h-4 w-4" />
197 Print Record
198 </Button>
199 <Button onClick={() => setEditModalOpen(true)}>
200 <Clipboard className="mr-2 h-4 w-4" />
201 Edit Record
202 </Button>
203 </div>
204 </div>
205

206 {/* Edit Modal */}
207 {patient && (
208 <PatientEditModal
209 patient={patient}
210 open={editModalOpen}
211 onOpenChange={setEditModalOpen}
212 onPatientUpdated={handlePatientUpdated}
213 />
214)}
215

216 <Tabs defaultValue="overview" className="w-full">
217 <TabsList className="grid grid-cols-5 mb-6">
218 <TabsTrigger value="overview">Overview </TabsTrigger >
219 <TabsTrigger value="assessment">Assessment </TabsTrigger >
220 <TabsTrigger value="treatment">Treatment </TabsTrigger >
221 <TabsTrigger value="medications">Medications </TabsTrigger >
222 <TabsTrigger value="incident">Incident Details </TabsTrigger >
223 </TabsList >
224

225 <TabsContent value="overview" className="space-y-6">
226 <div className="grid grid-cols-1 md:grid-cols-3 gap-6">
227 {/* Vital Signs Card */}
228 <Card className="md:col-span-1">
229 <CardHeader className="pb-2">
230 <CardTitle className="text-lg flex items-center">
231 <Activity className="mr-2 h-5 w-5 text-primary" />
232 Vital Signs
233 </CardTitle >
234 </CardHeader >

81

235 <CardContent >
236 <div className="space-y-4">
237 <div className="flex justify-between items-center">
238 <div className="flex items-center">
239 <Heart className="h-5 w-5 mr-2 text-red-500" />
240 Heart Rate
241 </div>
242 {formatValue(patient.HeartRate)}
243 </div>
244 <Separator />
245

246 <div className="flex justify-between items-center">
247 <div className="flex items-center">
248 <Activity className="h-5 w-5 mr-2 text-blue -500" />
249 Blood Pressure
250 </div>
251 {formatValue(patient.BloodPressure)}
252 </div>
253 <Separator />
254

255 <div className="flex justify-between items-center">
256 <div className="flex items-center">
257 <Lungs className="h-5 w-5 mr-2 text-green -500" />
258 Respiratory Rate
259 </div>
260 {formatValue(patient.RespiratoryRate)}
261 </div>
262 <Separator />
263

264 <div className="flex justify-between items-center">
265 <div className="flex items-center">
266 <Droplets className="h-5 w-5 mr-2 text-purple -500" />
267 SPO2
268 </div>
269 {formatValue(patient.SPO2)}
270 </div>
271 <Separator />
272

273 <div className="flex justify-between items-center">
274 <div className="flex items-center">
275 <Thermometer className="h-5 w-5 mr-2 text-orange -500" />
276 Temperature
277 </div>
278 {formatValue(patient.Temperature)}
279 </div>
280 <Separator />
281

282 <div className="flex justify-between items-center">
283 <div className="flex items-center">
284 <Droplets className="h-5 w-5 mr-2 text-yellow -500" />
285 Glucose
286 </div>
287 {formatValue(patient.Glucose)}
288 </div>
289 </div>
290 </CardContent >
291 </Card>
292

293 {/* Patient Information Card */}
294 <Card className="md:col-span-2">
295 <CardHeader className="pb-2">
296 <CardTitle className="text-lg flex items-center">
297 <User className="mr-2 h-5 w-5 text-primary" />
298 Patient Information
299 </CardTitle >
300 </CardHeader >
301 <CardContent >
302 <div className="grid grid-cols-1 md:grid-cols-2 gap-4">

82

303 <div>
304 <h3 className="text-sm font-medium text-muted-foreground mb-1">Demographics </

h3>
305 <div className="space-y-2">
306 <div className="flex justify-between">
307 Age
308 <span className={‘font-medium ${!patient.Age ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.Age)}
309 </div>
310 <div className="flex justify-between">
311 Gender
312 <span className={‘font-medium ${!patient.Gender ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.Gender)}
313 </div>
314 <div className="flex justify-between">
315 Race
316 <span className={‘font-medium ${!patient.Race ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.Race)}
317 </div>
318 <div className="flex justify-between">
319 Weight
320 <span className={‘font-medium ${!patient.WeightKg ? ’text-destructive’ :

’’}‘}>{patient.WeightKg ? ‘${formatValue(patient.WeightKg)} kg‘ : "N/A"}
321 </div>
322 </div>
323 </div>
324

325 <div>
326 <h3 className="text-sm font-medium text-muted-foreground mb-1">Contact

Information </h3>
327 <div className="space-y-2">
328 <div className="flex items-start gap-2">
329 <Home className="h-4 w-4 mt-0.5 flex-shrink -0 text-muted-foreground" />
330 <div className="space-y-1">
331 <p className={‘font-medium ${!patient.HomeAddress ? ’text-destructive’

: ’’}‘}>{formatAddress(patient.HomeAddress)}</p>
332 <div className="grid grid-cols-2 gap-2 text-sm">
333 <div>
334 City:
335 <span className={‘ml-2 ${!patient.City ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.City)}
336 </div>
337 <div>
338 State:
339 <span className={‘ml-2 ${!patient.State ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.State)}
340 </div>
341 <div>
342 ZIP:
343 <span className={‘ml-2 ${!patient.ZIPCode ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.ZIPCode)}
344 </div>
345 <div>
346 County:
347 <span className={‘ml-2 ${!patient.County ? ’text-destructive’ : ’’

}‘}>{formatValue(patient.County)}
348 </div>
349 </div>
350 {patient.ContactInfo && (
351 <div className="mt-2">
352 Contact:
353 <span className={‘ml-2 ${!patient.ContactInfo ? ’text-destructive’

: ’’}‘}>{formatValue(patient.ContactInfo)}
354 </div>
355)}
356 </div>
357 </div>
358 </div>

83

359 </div>
360

361 <div className="md:col-span-2">
362 <h3 className="text-sm font-medium text-muted-foreground mb-1">Medical

History </h3>
363 <div className="space-y-3 mt-2">
364 <div>
365 <p className="font-medium">Past Medical History </p>
366 <p className="text-sm">{formatMedicalConditions(patient.

PastMedicalHistory)}</p>
367 </div>
368 <div>
369 <p className="font-medium">Current Medications </p>
370 <p className="text-sm">{formatMedicalConditions(patient.

CurrentMedications)}</p>
371 </div>
372 <div>
373 <p className="font-medium">Allergies </p>
374 <p className="text-sm">{formatMedicalConditions(patient.

MedicationAllergies)}</p>
375 </div>
376 <div>
377 <p className="font-medium">Advance Directives </p>
378 <p className="text-sm">{formatMedicalCondition(patient.AdvanceDirectives)

}</p>
379 </div>
380 </div>
381 </div>
382 </div>
383 </CardContent >
384 </Card>
385 </div>
386

387 {/* Primary Complaint & Impression */}
388 <Card>
389 <CardHeader className="pb-2">
390 <CardTitle className="text-lg font-bold tracking -tight flex items-center">
391 <Stethoscope className="mr-2 h-5 w-5 text-primary" />
392 Primary Complaint & Impression
393 </CardTitle >
394 </CardHeader >
395 <CardContent >
396 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
397 <div>
398 <h3 className="text-sm font-medium text-muted-foreground mb-2">Primary

Complaint </h3>
399 <p className="text-lg font-medium">{formatMedicalCondition(patient.

PrimaryComplaint)}</p>
400 {patient.Duration && patient.TimeUnits && (
401 <p className="text-sm text-muted-foreground mt-1">
402 Duration: {formatValue(patient.Duration)} {formatValue(patient.TimeUnits)}
403 </p>
404)}
405 {patient.PrimarySymptom && (
406 <div className="mt-3">
407 <h4 className="text-sm font-medium">Primary Symptom </h4>
408 <p>{formatMedicalCondition(patient.PrimarySymptom)}</p>
409 </div>
410)}
411 {patient.OtherSymptoms && (
412 <div className="mt-3">
413 <h4 className="text-sm font-medium">Other Symptoms </h4>
414 <p>{formatMedicalConditions(patient.OtherSymptoms)}</p>
415 </div>
416)}
417 </div>
418

419 <div>

84

420 <h3 className="text-sm font-medium text-muted-foreground mb-2">Primary
Impression </h3>

421 <p className="text-lg font-medium">{formatMedicalCondition(patient.
PrimaryImpression)}</p>

422

423 <div className="mt-4 grid grid-cols-2 gap-2">
424 <div>
425 <h4 className="text-sm font-medium">Current Acuity </h4>
426 <Badge variant={getAcuityBadgeVariant(patient.Severity || "")}>
427 {formatMedicalCondition(patient.Severity)}
428 </Badge>
429 </div>
430 {patient.CardiacArrest && (
431 <div>
432 <h4 className="text-sm font-medium">Cardiac Arrest </h4>
433 <p>{formatMedicalCondition(patient.CardiacArrest)}</p>
434 </div>
435)}
436 {patient.PossibleInjury && (
437 <div>
438 <h4 className="text-sm font-medium">Possible Injury </h4>
439 <p>{formatMedicalCondition(patient.PossibleInjury)}</p>
440 </div>
441)}
442 </div>
443 </div>
444 </div>
445 </CardContent >
446 </Card>
447 </TabsContent >
448

449 <TabsContent value="assessment" className="space-y-6">
450 {/* GCS Assessment */}
451 <Card>
452 <CardHeader className="pb-2">
453 <CardTitle className="text-lg flex items-center">
454 <Brain className="mr-2 h-5 w-5 text-primary" />
455 Glasgow Coma Scale
456 </CardTitle >
457 </CardHeader >
458 <CardContent >
459 <div className="grid grid-cols-1 md:grid-cols-4 gap-4">
460 <div className="bg-muted/30 p-4 rounded-lg text-center">
461 <h3 className="text-sm font-medium text-muted-foreground">Eye</h3>
462 <p className={‘text-2xl font-bold mt-2 ${!patient.GCS_Eye ? ’text-destructive’

: ’’}‘}>
463 {patient.GCS_Eye || "N/A"}
464 </p>
465 </div>
466 <div className="bg-muted/30 p-4 rounded-lg text-center">
467 <h3 className="text-sm font-medium text-muted-foreground">Verbal </h3>
468 <p className={‘text-2xl font-bold mt-2 ${!patient.GCS_Verbal ? ’text-

destructive’ : ’’}‘}>
469 {patient.GCS_Verbal || "N/A"}
470 </p>
471 </div>
472 <div className="bg-muted/30 p-4 rounded-lg text-center">
473 <h3 className="text-sm font-medium text-muted-foreground">Motor</h3>
474 <p className={‘text-2xl font-bold mt-2 ${!patient.GCS_Motor ? ’text-destructive

’ : ’’}‘}>
475 {patient.GCS_Motor || "N/A"}
476 </p>
477 </div>
478 <div className="bg-primary/10 p-4 rounded-lg text-center">
479 <h3 className="text-sm font-medium text-primary">Total Score</h3>
480 <p className={‘text-2xl font-bold mt-2 ${!patient.GCS_Score ? ’text-destructive

’ : ’’}‘}>
481 {patient.GCS_Score || "N/A"}

85

482 </p>
483 {patient.GCS_Qualifier && <p className="text-xs mt-2">{patient.GCS_Qualifier}</

p>}
484 </div>
485 </div>
486 </CardContent >
487 </Card>
488

489 {/* Physical Examination */}
490 <Card>
491 <CardHeader className="pb-2">
492 <CardTitle className="text-lg font-bold tracking -tight flex items-center">
493 <Stethoscope className="mr-2 h-5 w-5 text-primary" />
494 Physical Examination
495 </CardTitle >
496 </CardHeader >
497 <CardContent >
498 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
499 <div className="space-y-4">
500 <div>
501 <h3 className="text-sm font-medium text-muted-foreground">Mental Status </h3>
502 <p className={‘font-medium mt-1 ${!patient.MentalStatus ? ’text-destructive’

: ’’}‘}>
503 {formatMedicalCondition(patient.MentalStatus)}
504 </p>
505 </div>
506 <Separator />
507

508 <div>
509 <h3 className="text-sm font-medium text-muted-foreground">Chest Exam</h3>
510 <p className={‘font-medium mt-1 ${!patient.ChestExam ? ’text-destructive’ : ’

’}‘}>
511 {formatMedicalCondition(patient.ChestExam)}
512 </p>
513 </div>
514 <Separator />
515

516 <div>
517 <h3 className="text-sm font-medium text-muted-foreground">Abdomen Exam</h3>
518 <p className={‘font-medium mt-1 ${!patient.AbdomenExam ? ’text-destructive’ :

’’}‘}>
519 {formatMedicalCondition(patient.AbdomenExam)}
520 </p>
521 </div>
522 <Separator />
523

524 <div>
525 <h3 className="text-sm font-medium text-muted-foreground">Lung Exam</h3>
526 <p className={‘font-medium mt-1 ${!patient.LungExam ? ’text-destructive’ : ’’

}‘}>
527 {formatMedicalCondition(patient.LungExam)}
528 </p>
529 </div>
530 </div>
531

532 <div className="space-y-4">
533 <div>
534 <h3 className="text-sm font-medium text-muted-foreground">Skin Assessment </h3

>
535 <p className={‘font-medium mt-1 ${!patient.SkinAssessment ? ’text-destructive

’ : ’’}‘}>
536 {formatMedicalCondition(patient.SkinAssessment)}
537 </p>
538 </div>
539 <Separator />
540

541 <div>
542 <h3 className="text-sm font-medium text-muted-foreground">Back/Spine Exam</h3

86

>
543 <p className={‘font-medium mt-1 ${!patient.BackSpineExam ? ’text-destructive’

: ’’}‘}>
544 {formatMedicalCondition(patient.BackSpineExam)}
545 </p>
546 </div>
547 <Separator />
548

549 <div>
550 <h3 className="text-sm font-medium text-muted-foreground">Extremities Exam</

h3>
551 <p className={‘font-medium mt-1 ${!patient.ExtremitiesExam ? ’text-

destructive’ : ’’}‘}>
552 {formatMedicalCondition(patient.ExtremitiesExam)}
553 </p>
554 </div>
555 <Separator />
556

557 <div>
558 <h3 className="text-sm font-medium text-muted-foreground">Eye Exam</h3>
559 <p className={‘font-medium mt-1 ${!patient.EyeExam_Bilateral && !patient.

EyeExam_Left && !patient.EyeExam_Right ? ’text-destructive’ : ’’}‘}>
560 {formatMedicalCondition(patient.EyeExam_Bilateral) ||
561 (patient.EyeExam_Left && patient.EyeExam_Right
562 ? ‘Left: ${formatMedicalCondition(patient.EyeExam_Left)}, Right: ${

formatMedicalCondition(patient.EyeExam_Right)}‘
563 : "Not assessed")}
564 </p>
565 </div>
566 </div>
567 </div>
568 </CardContent >
569 </Card>
570 </TabsContent >
571

572 <TabsContent value="treatment" className="space-y-6">
573 {/* Procedures */}
574 <Card>
575 <CardHeader className="pb-2">
576 <CardTitle className="text-lg flex items-center">
577 <Stethoscope className="mr-2 h-5 w-5 text-primary" />
578 Procedures
579 </CardTitle >
580 </CardHeader >
581 <CardContent >
582 {patient.Procedure ? (
583 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
584 <div className="space-y-4">
585 <div>
586 <h3 className="text-sm font-medium text-muted-foreground">Procedure </h3>
587 <p className={‘font-medium mt-1 ${!patient.Procedure ? ’text-destructive’ :

’’}‘}>
588 {formatMedicalCondition(patient.Procedure)}
589 </p>
590 </div>
591

592 <div>
593 <h3 className="text-sm font-medium text-muted-foreground">Location </h3>
594 <p className={‘font-medium mt-1 ${!patient.ProcLocation ? ’text-destructive

’ : ’’}‘}>
595 {formatMedicalCondition(patient.ProcLocation)}
596 </p>
597 {patient.IVLocation && (
598 <p className={‘text-sm ${!patient.IVLocation ? ’text-destructive’ : ’’

}‘}>
599 IV Location: {formatMedicalCondition(patient.IVLocation)}
600 </p>
601)}

87

602 </div>
603

604 {patient.Size && (
605 <div>
606 <h3 className="text-sm font-medium text-muted-foreground">Size</h3>
607 <p className={‘font-medium mt-1 ${!patient.Size ? ’text-destructive’ : ’’

}‘}>
608 {formatValue(patient.Size)}
609 </p>
610 </div>
611)}
612 </div>
613

614 <div className="space-y-4">
615 <div>
616 <h3 className="text-sm font-medium text-muted-foreground">Time</h3>
617 <p className={‘font-medium mt-1 ${!patient.ProcTime ? ’text-destructive’ :

’’}‘}>
618 {patient.ProcTime || "Not recorded"}
619 </p>
620 </div>
621

622 <div>
623 <h3 className="text-sm font-medium text-muted-foreground">Attempts/Success

</h3>
624 <p className={‘font-medium mt-1 ${!patient.Attempts && !patient.Successful

? ’text-destructive’ : ’’}‘}>
625 {patient.Attempts ? ‘${patient.Attempts} attempts‘ : "Not recorded"}
626 {patient.Successful && ‘ ${patient.Successful}‘}
627 </p>
628 </div>
629

630 <div>
631 <h3 className="text-sm font-medium text-muted-foreground">Response </h3>
632 <p className={‘font-medium mt-1 ${!patient.ProcResponse ? ’text-destructive

’ : ’’}‘}>
633 {patient.ProcResponse || "Not recorded"}
634 </p>
635 </div>
636 </div>
637 </div>
638) : (
639 <div className="text-center py-6 text-destructive">
640 <Stethoscope className="h-10 w-10 mx-auto mb-2 opacity -30" />
641 <p>No procedures performed </p>
642 </div>
643)}
644 </CardContent >
645 </Card>
646

647 {/* Disposition */}
648 <Card>
649 <CardHeader className="pb-2">
650 <CardTitle className="text-lg flex items-center">
651 <Ambulance className="mr-2 h-5 w-5 text-primary" />
652 Disposition & Transport
653 </CardTitle >
654 </CardHeader >
655 <CardContent >
656 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
657 <div className="space-y-4">
658 <div>
659 <h3 className="text-sm font-medium text-muted-foreground">Transport

Disposition </h3>
660 <p className={‘font-medium mt-1 ${!patient.TransportDisposition ? ’text-

destructive’ : ’’}‘}>
661 {formatMedicalCondition(patient.TransportDisposition)}
662 </p>

88

663 </div>
664

665 <div>
666 <h3 className="text-sm font-medium text-muted-foreground">Level of Care</h3>
667 <p className={‘font-medium mt-1 ${!patient.LevelOfCareProvided ? ’text-

destructive’ : ’’}‘}>
668 {formatMedicalCondition(patient.LevelOfCareProvided)}
669 </p>
670 </div>
671

672 <div>
673 <h3 className="text-sm font-medium text-muted-foreground">Transport Agency/

Unit</h3>
674 <p className={‘font-medium mt-1 ${!patient.TransportAgency && !patient.

TransportUnit ? ’text-destructive’ : ’’}‘}>
675 {formatMedicalCondition(patient.TransportAgency)}
676 {patient.TransportUnit && ‘ Unit: ${formatValue(patient.TransportUnit)

}‘}
677 </p>
678 </div>
679 </div>
680

681 <div className="space-y-4">
682 <div>
683 <h3 className="text-sm font-medium text-muted-foreground">Final Patient

Acuity </h3>
684 <p className="font-medium mt-1">
685 <Badge variant={getAcuityBadgeVariant(patient.Severity || "")}>
686 {formatMedicalCondition(patient.Severity)}
687 </Badge>
688 </p>
689 </div>
690

691 <div>
692 <h3 className="text-sm font-medium text-muted-foreground">Primary Care

Provider </h3>
693 <p className={‘font-medium mt-1 ${!patient.EMSPrimaryCareProvider ? ’text-

destructive’ : ’’}‘}>
694 {formatName(patient.EMSPrimaryCareProvider)}
695 </p>
696 </div>
697

698 <div>
699 <h3 className="text-sm font-medium text-muted-foreground">Transport Reason </

h3>
700 <p className={‘font-medium mt-1 ${!patient.TransportReason ? ’text-

destructive’ : ’’}‘}>
701 {formatMedicalCondition(patient.TransportReason)}
702 </p>
703 </div>
704 </div>
705 </div>
706 </CardContent >
707 </Card>
708 </TabsContent >
709

710 <TabsContent value="medications" className="space-y-6">
711 <MedicationHistory patientId={patient.PatientID} />
712 </TabsContent >
713

714 <TabsContent value="incident" className="space-y-6">
715 {/* Incident Information */}
716 <Card>
717 <CardHeader className="pb-2">
718 <CardTitle className="text-lg flex items-center">
719 <Info className="mr-2 h-5 w-5 text-primary" />
720 Incident Information
721 </CardTitle >

89

722 </CardHeader >
723 <CardContent >
724 <div className="grid grid-cols-1 md:grid-cols-3 gap-6">
725 <div className="space-y-3">
726 <div>
727 <h3 className="text-sm font-medium text-muted-foreground">Incident Number </h3

>
728 <p className={‘font-medium mt-1 ${!patient.IncidentNumber ? ’text-destructive

’ : ’’}‘}>
729 {patient.IncidentNumber || "Not recorded"}
730 </p>
731 </div>
732

733 <div>
734 <h3 className="text-sm font-medium text-muted-foreground">Service Requested </

h3>
735 <p className={‘font-medium mt-1 ${!patient.ServiceRequested ? ’text-

destructive’ : ’’}‘}>
736 {patient.ServiceRequested || "Not recorded"}
737 </p>
738 </div>
739

740 <div>
741 <h3 className="text-sm font-medium text-muted-foreground">Primary Role</h3>
742 <p className={‘font-medium mt-1 ${!patient.PrimaryRole ? ’text-destructive’ :

’’}‘}>
743 {patient.PrimaryRole || "Not recorded"}
744 </p>
745 </div>
746 </div>
747

748 <div className="space-y-3">
749 <div>
750 <h3 className="text-sm font-medium text-muted-foreground">Response Mode</h3>
751 <p className={‘font-medium mt-1 ${!patient.ResponseMode ? ’text-destructive’

: ’’}‘}>
752 {patient.ResponseMode || "Not recorded"}
753 </p>
754 </div>
755

756 <div>
757 <h3 className="text-sm font-medium text-muted-foreground">EMS Shift</h3>
758 <p className={‘font-medium mt-1 ${!patient.EMSShift ? ’text-destructive’ : ’’

}‘}>
759 {patient.EMSShift || "Not recorded"}
760 </p>
761 </div>
762

763 <div>
764 <h3 className="text-sm font-medium text-muted-foreground">Scene Type</h3>
765 <p className={‘font-medium mt-1 ${!patient.SceneType ? ’text-destructive’ : ’

’}‘}>
766 {patient.SceneType || "Not recorded"}
767 </p>
768 </div>
769 </div>
770

771 <div className="space-y-3">
772 <div>
773 <h3 className="text-sm font-medium text-muted-foreground">Category </h3>
774 <p className={‘font-medium mt-1 ${!patient.Category ? ’text-destructive’ : ’’

}‘}>
775 {patient.Category || "Not recorded"}
776 </p>
777 </div>
778

779 <div>
780 <h3 className="text-sm font-medium text-muted-foreground">Back In Service </h3

90

>
781 <p className={‘font-medium mt-1 ${!patient.BackInService ? ’text-destructive’

: ’’}‘}>
782 {patient.BackInService || "Not recorded"}
783 </p>
784 </div>
785

786 <div>
787 <h3 className="text-sm font-medium text-muted-foreground">Crew Members </h3>
788 <p className={‘font-medium mt-1 ${!patient.CrewMembers ? ’text-destructive’ :

’’}‘}>
789 {patient.CrewMembers || "Not recorded"}
790 </p>
791 {patient.NumberOfCrew && (
792 <p className={‘text-sm ${!patient.NumberOfCrew ? ’text-destructive’ : ’’

}‘}>
793 Number: {patient.NumberOfCrew}
794 </p>
795)}
796 </div>
797 </div>
798 </div>
799 </CardContent >
800 </Card>
801

802 {/* Location Information */}
803 <Card>
804 <CardHeader className="pb-2">
805 <CardTitle className="text-lg flex items-center">
806 <Home className="mr-2 h-5 w-5 text-primary" />
807 Location Information
808 </CardTitle >
809 </CardHeader >
810 <CardContent >
811 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
812 <div>
813 <h3 className="text-sm font-medium text-muted-foreground mb-2">Dispatch

Location </h3>
814 <div className="space-y-2">
815 {patient.DispatchCity && (
816 <p>
817 City:{" "}
818
819 {formatValue(patient.DispatchCity)}
820
821 </p>
822)}
823 {patient.DispatchState && (
824 <p>
825 State:{" "}
826
827 {formatValue(patient.DispatchState)}
828
829 </p>
830)}
831 {patient.DispatchZIP && (
832 <p>
833 ZIP:{" "}
834
835 {formatValue(patient.DispatchZIP)}
836
837 </p>
838)}
839 {patient.DispatchCounty && (
840 <p>
841 County:{" "}
842
843 {formatValue(patient.DispatchCounty)}

91

844
845 </p>
846)}
847 </div>
848 </div>
849

850 <div>
851 <h3 className="text-sm font-medium text-muted-foreground mb-2">Timing

Information </h3>
852 <div className="space-y-2">
853 {patient.ArrivedOnScene && (
854 <p>
855 Arrived On Scene:{" "}
856
857 {patient.ArrivedOnScene}
858
859 </p>
860)}
861 {patient.FirstOnScene && (
862 <p>
863 First On Scene:{" "}
864
865 {patient.FirstOnScene}
866
867 </p>
868)}
869 {patient.PatientContactMade && (
870 <p>
871 Patient Contact Made:{" "}
872
873 {patient.PatientContactMade}
874
875 </p>
876)}
877 {patient.StagePriorToContact && (
878 <p>
879 Stage Prior To Contact:{" "}
880
881 {patient.StagePriorToContact}
882
883 </p>
884)}
885 </div>
886 </div>
887 </div>
888 </CardContent >
889 </Card>
890

891 {/* Additional Information */}
892 <Card>
893 <CardHeader className="pb-2">
894 <CardTitle className="text-lg font-bold tracking -tight flex items-center">
895 <FileText className="mr-2 h-5 w-5 text-primary" />
896 Additional Information
897 </CardTitle >
898 </CardHeader >
899 <CardContent >
900 <div className="grid grid-cols-1 md:grid-cols-2 gap-6">
901 <div className="space-y-3">
902 {patient.OtherAgencies && (
903 <div>
904 <h3 className="text-sm font-medium text-muted-foreground">Other Agencies </

h3>
905 <p className={‘font-medium mt-1 ${!patient.OtherAgencies ? ’text-

destructive’ : ’’}‘}>
906 {formatMedicalCondition(patient.OtherAgencies)}
907 </p>
908 </div>

92

909)}
910

911 {patient.OtherAgencyOnScene && (
912 <div>
913 <h3 className="text-sm font-medium text-muted-foreground">Other Agency On

Scene</h3>
914 <p className={‘font-medium mt-1 ${!patient.OtherAgencyOnScene ? ’text-

destructive’ : ’’}‘}>
915 {formatMedicalCondition(patient.OtherAgencyOnScene)}
916 </p>
917 </div>
918)}
919

920 {patient.NumberOfPatients && (
921 <div>
922 <h3 className="text-sm font-medium text-muted-foreground">Number Of

Patients </h3>
923 <p className={‘font-medium mt-1 ${!patient.NumberOfPatients ? ’text-

destructive’ : ’’}‘}>
924 {formatValue(patient.NumberOfPatients)}
925 </p>
926 </div>
927)}
928 </div>
929

930 <div className="space-y-3">
931 {patient.AlcoholDrugUse && (
932 <div>
933 <h3 className="text-sm font-medium text-muted-foreground">Alcohol/Drug Use

</h3>
934 <p className={‘font-medium mt-1 ${!patient.AlcoholDrugUse ? ’text-

destructive’ : ’’}‘}>
935 {formatMedicalCondition(patient.AlcoholDrugUse)}
936 </p>
937 </div>
938)}
939

940 {patient.SignsOfAbuse && (
941 <div>
942 <h3 className="text-sm font-medium text-muted-foreground">Signs Of Abuse</

h3>
943 <p className={‘font-medium mt-1 ${!patient.SignsOfAbuse ? ’text-destructive

’ : ’’}‘}>
944 {formatMedicalCondition(patient.SignsOfAbuse)}
945 </p>
946 </div>
947)}
948

949 {patient["5150Hold"] && (
950 <div>
951 <h3 className="text-sm font-medium text-muted-foreground">5150 Hold</h3>
952 <p className={‘font-medium mt-1 ${!patient["5150Hold"] ? ’text-destructive’

: ’’}‘}>
953 {formatMedicalCondition(patient["5150Hold"])}
954 </p>
955 </div>
956)}
957 </div>
958 </div>
959 </CardContent >
960 </Card>
961 </TabsContent >
962 </Tabs>
963 </div>
964)
965 }

93

A.8 stats.ts

1 import { supabase } from ’@/utils/supabase/server’
2 import { NextResponse } from ’next/server’
3

4 export const dynamic = ’force-dynamic’
5

6 export async function GET() {
7 try {
8 // Get total patients count
9 const { count: totalPatients , error: countError } = await supabase

10 .from(’PatientData’)
11 .select(’PatientID’, { count: ’exact’, head: true })
12

13 if (countError) throw countError
14

15 // Get recent patients - last 24 hours
16 const twentyFourHoursAgo = new Date(Date.now() - 24 * 60 * 60 * 1000)
17

18 const { data: recentPatients , error: recentError } = await supabase
19 .from(’PatientData’)
20 .select(’PatientID , PatientName , Age, Gender, Severity, Time’)
21 .gte(’Time’, twentyFourHoursAgo.toISOString())
22 .order(’Time’, { ascending: false })
23

24 if (recentError) throw recentError
25

26 // Calculate critical cases from recent patients
27 const criticalCases = recentPatients?.filter(patient =>
28 patient.Severity?.toLowerCase() === ’critical’
29) || []
30

31 // Debug logs
32 console.log(’Dashboard Stats Query:’, {
33 twentyFourHoursAgo: twentyFourHoursAgo.toISOString(),
34 recentPatientsQuery: {
35 timeRange: ‘${twentyFourHoursAgo.toISOString()} to now‘
36 }
37 })
38

39 console.log(’Dashboard Stats Results:’, {
40 totalPatients ,
41 criticalCasesCount: criticalCases.length,
42 recentPatientsCount: recentPatients?.length || 0,
43 sampleCriticalCase: criticalCases[0],
44 sampleRecentPatient: recentPatients?.[0]
45 })
46

47 return NextResponse.json({
48 totalPatients: totalPatients || 0,
49 criticalCases: criticalCases.length,
50 recentPatients: recentPatients?.length || 0,
51 recentPatientsList: recentPatients || []
52 })
53

54 } catch (error) {
55 console.error(’Dashboard stats error:’, error)
56 return NextResponse.json(
57 { error: ’Internal Server Error’ },
58 { status: 500 }
59)
60 }
61 }

A.9 globals.css

94

1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;
4

5 @layer base {
6 :root {
7 --background: 0 0% 100%;
8 --foreground: 240 10% 3.9%;
9 --card: 0 0% 100%;

10 --card-foreground: 240 10% 3.9%;
11 --popover: 0 0% 100%;
12 --popover-foreground: 240 10% 3.9%;
13 --primary: 210 100% 50%;
14 --primary-foreground: 0 0% 98%;
15 --secondary: 240 4.8% 95.9%;
16 --secondary -foreground: 240 5.9% 10%;
17 --muted: 240 4.8% 95.9%;
18 --muted-foreground: 240 3.8% 46.1%;
19 --accent: 240 4.8% 95.9%;
20 --accent-foreground: 240 5.9% 10%;
21 --destructive: 0 84.2% 60.2%;
22 --destructive -foreground: 0 0% 98%;
23 --border: 240 5.9% 90%;
24 --input: 240 5.9% 90%;
25 --ring: 240 5.9% 10%;
26 --radius: 0.75rem;
27 }
28

29 .dark {
30 --background: 240 10% 3.9%;
31 --foreground: 0 0% 98%;
32 --card: 240 10% 3.9%;
33 --card-foreground: 0 0% 98%;
34 --popover: 240 10% 3.9%;
35 --popover-foreground: 0 0% 98%;
36 --primary: 210 100% 50%;
37 --primary-foreground: 240 5.9% 10%;
38 --secondary: 240 3.7% 15.9%;
39 --secondary -foreground: 0 0% 98%;
40 --muted: 240 3.7% 15.9%;
41 --muted-foreground: 240 5% 64.9%;
42 --accent: 240 3.7% 15.9%;
43 --accent-foreground: 0 0% 98%;
44 --destructive: 0 62.8% 30.6%;
45 --destructive -foreground: 0 0% 98%;
46 --border: 240 3.7% 15.9%;
47 --input: 240 3.7% 15.9%;
48 --ring: 240 4.9% 83.9%;
49 }
50 }
51

52 @layer base {
53 * {
54 @apply border-border;
55 }
56 body {
57 @apply bg-background text-foreground;
58 }
59 }
60

61 .dark body {
62 background -color: hsl(220 20% 10%);
63 color: hsl(210 40% 98%);
64 }
65

66 .dark svg {
67 color: hsl(210 40% 98%);
68 }

95

A.10 styles.css

1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;
4

5 body {
6 font-family: Arial, Helvetica , sans-serif;
7 }
8

9 @layer utilities {
10 .text-balance {
11 text-wrap: balance;
12 }
13 }
14

15 @layer base {
16 :root {
17 --background: 0 0% 100%;
18 --foreground: 0 0% 3.9%;
19 --card: 0 0% 100%;
20 --card-foreground: 0 0% 3.9%;
21 --popover: 0 0% 100%;
22 --popover-foreground: 0 0% 3.9%;
23 --primary: 0 0% 9%;
24 --primary-foreground: 0 0% 98%;
25 --secondary: 0 0% 96.1%;
26 --secondary -foreground: 0 0% 9%;
27 --muted: 0 0% 96.1%;
28 --muted-foreground: 0 0% 45.1%;
29 --accent: 0 0% 96.1%;
30 --accent-foreground: 0 0% 9%;
31 --destructive: 0 84.2% 60.2%;
32 --destructive -foreground: 0 0% 98%;
33 --border: 0 0% 89.8%;
34 --input: 0 0% 89.8%;
35 --ring: 0 0% 3.9%;
36 --chart -1: 12 76% 61%;
37 --chart -2: 173 58% 39%;
38 --chart -3: 197 37% 24%;
39 --chart -4: 43 74% 66%;
40 --chart -5: 27 87% 67%;
41 --radius: 0.5rem;
42 --sidebar-background: 0 0% 98%;
43 --sidebar-foreground: 240 5.3% 26.1%;
44 --sidebar-primary: 240 5.9% 10%;
45 --sidebar-primary-foreground: 0 0% 98%;
46 --sidebar-accent: 240 4.8% 95.9%;
47 --sidebar-accent-foreground: 240 5.9% 10%;
48 --sidebar-border: 220 13% 91%;
49 --sidebar-ring: 217.2 91.2% 59.8%;
50 }
51 .dark {
52 --background: 0 0% 3.9%;
53 --foreground: 0 0% 98%;
54 --card: 0 0% 3.9%;
55 --card-foreground: 0 0% 98%;
56 --popover: 0 0% 3.9%;
57 --popover-foreground: 0 0% 98%;
58 --primary: 0 0% 98%;
59 --primary-foreground: 0 0% 9%;
60 --secondary: 0 0% 14.9%;
61 --secondary -foreground: 0 0% 98%;
62 --muted: 0 0% 14.9%;
63 --muted-foreground: 0 0% 63.9%;
64 --accent: 0 0% 14.9%;
65 --accent-foreground: 0 0% 98%;

96

66 --destructive: 0 62.8% 30.6%;
67 --destructive -foreground: 0 0% 98%;
68 --border: 0 0% 14.9%;
69 --input: 0 0% 14.9%;
70 --ring: 0 0% 83.1%;
71 --chart -1: 220 70% 50%;
72 --chart -2: 160 60% 45%;
73 --chart -3: 30 80% 55%;
74 --chart -4: 280 65% 60%;
75 --chart -5: 340 75% 55%;
76 --sidebar-background: 240 5.9% 10%;
77 --sidebar-foreground: 240 4.8% 95.9%;
78 --sidebar-primary: 224.3 76.3% 48%;
79 --sidebar-primary-foreground: 0 0% 100%;
80 --sidebar-accent: 240 3.7% 15.9%;
81 --sidebar-accent-foreground: 240 4.8% 95.9%;
82 --sidebar-border: 240 3.7% 15.9%;
83 --sidebar-ring: 217.2 91.2% 59.8%;
84 }
85 }
86

87 @layer base {
88 * {
89 @apply border-border;
90 }
91 body {
92 @apply bg-background text-foreground;
93 }
94 }

A.11 ActivePatient.cs

1 using Newtonsoft.Json.Linq;
2

3 public static class ActivePatient
4 {
5 public static string PatientID { get; set; }
6 public static JObject PatientJSON { get; set; }
7 }

A.12 AudioFileLogger.cs

1 /*
2 * EMT Vision Dashboard
3 * Copyright 2025 Logan Calder. All Rights Reserved.
4 *
5 * This software and its contents are protected by copyright law. The EMT Vision Dashboard ,
6 * including but not limited to its source code, design, architecture , and implementation ,
7 * is the exclusive property of Logan Calder.
8 *
9 * Usage Restrictions:

10 * Without explicit written consent from Logan Calder, you are strictly prohibited from:
11 * 1. Copying, reproducing , or distributing any part of this codebase
12 * 2. Modifying , adapting, or creating derivative works based on this software
13 * 3. Using this code or its design as a reference or foundation for other projects
14 * 4. Reverse engineering , decompiling , or disassembling the software
15 * 5. Removing or altering any copyright notices or proprietary labels
16 *
17 * Legal Notice:
18 * Any unauthorized use, reproduction , or distribution of this software or its contents
19 * is strictly prohibited and may result in severe legal consequences. This includes but
20 * is not limited to civil and criminal penalties under applicable copyright laws.
21 *
22 * For inquiries regarding usage rights or permissions , please contact:
23 * Logan Calder | lcalder@scu.edu
24 *

97

25 * Disclaimer:
26 * This software is provided "as is" without warranty of any kind, either express or implied.
27 * The author assumes no responsibility for any damages arising from the use of this software.
28 */
29

30 using System;
31 using System.IO;
32 using UnityEngine;
33 using System.Collections;
34 using System.Threading.Tasks;
35 using Microsoft.CognitiveServices.Speech;
36 using Microsoft.CognitiveServices.Speech.Audio;
37 using UnityEngine.Networking;
38 using System.Text;
39 using System.Collections.Generic;
40 using System.Text.Json.Serialization;
41 using System.Net.Http;
42 using System.Net.Http.Headers;
43

44 // AudioFileLogger.cs
45 // This script is used to monitor a directory for new audio files, then process them through

Microsoft Azure Speech Services and OpenAI GPT-4o.
46 //
47 // Usage: Attach to a GameObject in the scene. Call StartRecording() to begin recording. Call

StopRecording() to stop recording.
48

49 public class AudioFileLogger : MonoBehaviour
50 {
51 // IMPORTANT: API Keys & Configs (accessed from appsettings.json, not included in repo)
52 // AZURE DATA
53

54 private string azureKey = "
E3RJqLwLmIfbN9tTb8JyHn4myM7Y7OJ1M1mgLKdX3fzcyfr625SVJQQJ99BCAC4f1cMXJ3w3AAAYACOGYVtf";

55 private string region = "westus";
56 // OPEN AI DATA
57 private string openAIKey = "sk-proj-xSmEbAuZzh3V2ChhulNd1oSOsLyxO5SqlhIyMQM -6

yiwRIhec3M3vZCOQwM4POD6J6lfZE9V6bT3BlbkFJawka0V444zByXe9kPRX0c0OYXPpQjXIlqilS_4f9gc7PofF38t66xpeLzFRJXhYVomkbJYmXgA
";

58 private string openAIURL = "https://api.openai.com/v1/chat/completions";
59 // SUPABASE DATA
60 private string supabaseUrl = "https://yuwrsuaqhbbfxqlrybgg.supabase.co/rest/v1/PatientData";
61 private string supabaseUrlMedication = "https://yuwrsuaqhbbfxqlrybgg.supabase.co/rest/v1/

Medications";
62 private string supabaseKey = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Inl1d3JzdWFxaGJiZnhxbHJ5YmdnIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0MDA3NTk0NywiZXhwIjoyMDU1NjUxOTQ3fQ
.oDOmFPwxbq9FosgsJb4YPs3xwVTPdNL4ihNlw3oZwTk";

63 // File monitoring variables
64 private string conversation = "";
65 private string medicineConversation = "";
66 private SpeechRecognizer recognizer;
67 private AudioConfig audioConfig;
68 private SpeechConfig speechConfig;
69

70 private string directoryPath;
71 private FileSystemWatcher fileWatcher;
72 private string patientId = "";
73

74 private string json_template;
75 private string current_data = "";
76

77 private string timestamp;
78 private string QueuedText = null;
79 private string QueuedMedicineText = null;
80 string medication_json_template = $@"{{""MedicationID"":""MedicationName"":""

QuantityAdministered"":""Timestamp"":""PatientID"":}}";
81 string medicinePrompt = @"
82 Youre GPT-4o mini, an advanced AI agent responsible for transcribing and recording confidential

patient information into a structured JSON format. Your primary task is to extract, filter,

98

and organize relevant information from the provided input while preserving existing data that
remains relevant. Your output must be a fully formatted JSON string, ensuring accuracy,
consistency , and adherence to predefined constraints. Follow the instructions below with
utmost precision:

83

84 ---
85

86 **CSV Format** (column headers):
87 ‘Medication ‘,‘Dosage‘,‘DosageUnits ‘,‘Route‘,‘TimeGiven ‘,‘PersonAdministering ‘,‘Effect‘,‘

MedicationID ‘,‘PatientID ‘,‘Notes‘
88

89 ---
90

91 **General Instructions:**
92 1. **Maintain Data Integrity:** Do not delete existing data unless new information explicitly

overrides it or renders it invalid.
93 2. **Do Not Fabricate Data:** If a field has no information , leave it blank but do not create

speculative or incorrect data.
94 3. **Retain Identifying Information:** Fields such as ‘PatientID ‘, ‘PatientName ‘, ‘Age‘, ‘

WeightKg‘, and ‘ZIPCode‘ should remain singular values and must not be converted into lists.
95 4. **Reformat for Clarity:** Simplify and standardize input when possible. For example, ‘Patient

has a history of severe hypertension ‘ should be recorded as ‘hypertension.‘
96 5. **Follow Structured Field Assignments:** Ensure every piece of data is allocated to its

correct field and is not misplaced.
97 6. **MOST IMPORTANT:** ONLY RETURN A JSON OBJECT. DO NOT RETURN ANYTHING ELSE. DO NOT ENCASE IN

‘‘‘JSON‘‘‘ TAGS. RETURN IN A VALID JSON FORMAT. DO NOT ADD COMMENTS. IF JSON IS INVALID, IT
WILL FAIL.

98

99 ---
100

101 **Field Definitions:**
102 - **‘MedicationID ‘**: (uuid) The unique identifier for the medication.
103 - **‘MedicationName ‘**: (Text) Name of the drug administered.
104 - **‘QuantityAdministered ‘**: (int8) Numeric amount administered in ml.
105 - **‘Timestamp ‘**: (timestamptz) Timestamp of when the medication was administered.
106 - **‘PatientID ‘**: (text)The patient ID of the patient being treated. This will be provided to

you.
107

108 ---
109

110 **Input Types:**
111 1. ‘Medication ID‘: The unique identifier for the medication. This will be provided to you.
112 2. ‘Transcript ‘: A brief transcription of what was said by a clinician or responder.
113 3. ‘Timestamp ‘: The timestamp of the transcription.
114 4. ‘Template ‘: A template for the JSON object.
115 5. ‘Patient ID‘: The patient ID of the patient being treated. This will be provided to you.
116

117 ---
118

119 **MOST IMPORTANT:** RETURN A SINGLE JSON. NO QUOTES UNLESS INSIDE A FIELD. LEAVE UNMENTIONED
FIELDS EMPTY.";

120 string gptPrompt = @"
121 You are GPT-4o mini, an advanced AI agent responsible for transcribing and recording

confidential patient information into a structured JSON format. Your primary task is to
extract, filter, and organize relevant information from the provided input while preserving
existing data that remains relevant. Your output must be a fully formatted JSON string,
ensuring accuracy , consistency , and adherence to predefined constraints. Follow the
instructions below with utmost precision:

122

123 **General Instructions:**
124 1. **Maintain Data Integrity:** Do not delete existing data unless new information explicitly

overrides it or renders it invalid.
125 2. **Do Not Fabricate Data:** If a field has no information , leave it blank but do not create

speculative or incorrect data.
126 3. **Retain Identifying Information:** Fields such as ‘PatientID ‘, ‘PatientName ‘, ‘Age‘, ‘

WeightKg‘, and ‘ZIPCode‘ should remain singular values and must not be converted into lists.
127 4. **Append Multiple Entries Where Appropriate:** If multiple values apply to a field (e.g.,

medications , symptoms, or past medical history), store them as a list while ensuring they are

99

relevant and distinct.
128 5. **Reformat for Clarity:** Simplify and standardize input when possible. For example, ‘Patient

has a history of severe hypertension ‘ should be recorded as ‘hypertension.‘
129 6. **Follow Structured Field Assignments:** Ensure every piece of data is allocated to its

correct field and is not misplaced.
130 7. **MOST IMPORTANT:** ONLY RETURN A JSON OBJECT. DO NOT RETURN ANYTHING ELSE. DO NOT ENCASE IN

‘‘‘JSON‘‘‘ TAGS. RETURN IN A VALID JSON FORMAT. DO NOT ADD COMMENTS. IF JSON IS INVALID, IT
WILL FAIL.

131

132 ---
133

134 **Input Types:**
135 1. **Database Record (Existing Data):**
136 - You will receive a JSON object ‘current_data ‘ containing previously recorded patient

information. Use this as the baseline data.
137 2. **Recent Audio Transcription (40s Context):**
138 - This contains the latest spoken details from an emergency medical responder , nurse, or

doctor.
139 3. **Additional Context:**
140 - Information regarding the circumstances under which the data is recorded (e.g., emergency

setting, follow-up assessment).
141

142 Additionally , you are provided with ‘json_template ‘, which contains the empty JSON structure that
must be populated.

143

144 ---
145

146 **Field Processing Rules:**
147 **1. Patient Identification & Demographics**
148 - **‘PatientID ‘** (Mandatory , Unique) **Do not modify or delete.**
149 - **‘PatientName ‘** (String) Retain unless an explicit correction is provided.
150 - **‘Age‘** (Integer/String) Ensure only one value is present.
151 - **‘Gender ‘** (M/F) Extract from input if mentioned; use ‘M‘ for male and ‘F‘ for female.
152 - **‘HomeAddress ‘** Only update if a full address is provided.
153 - **‘City, County, State, ZIPCode ‘** Populate if new, but do not override unless certain.
154 - **‘Race‘** Retain or update only if explicitly stated.
155

156 **2. Incident Details**
157 - **‘IncidentNumber ‘** Must remain singular.
158 - **‘ServiceRequested ‘** Include service type (e.g., BLS, ALS, transport).
159 - **‘PrimaryRole ‘** Define based on responder ‘s role (e.g., paramedic , firefighter , nurse).
160 - **‘ResponseMode ‘** Extract from responder dialogue (e.g., ‘Code 3‘ or ‘Non-emergent ‘).
161

162 **3. Scene & Patient Interaction**
163 - **‘SceneType ‘** Capture relevant setting (e.g., ‘residential ‘, ‘public street ‘).
164 - **‘Category ‘** Medical, trauma, behavioral , etc.
165 - **‘CrewMembers ‘** List all names or IDs if provided.
166 - **‘NumberOfCrew ‘** Integer, representing responding crew.
167 - **‘PatientContactMade ‘** Boolean (true if contact established).
168

169 **4. Clinical Observations & Symptoms**
170 - **‘PrimaryComplaint ‘** Capture the main reason for the call.
171 - **‘OtherSymptoms ‘** Extract all additional symptoms.
172 - **‘AlcoholDrugUse ‘** Mention only if stated.
173 - **‘InitialAcuity ‘** Determine severity (e.g., minor, severe).
174 - **‘CardiacArrest ‘** Boolean (true if present).
175 - **‘PossibleInjury ‘** Boolean (true if reported).
176 - **‘SignsOfAbuse ‘** Boolean (true if noted).
177

178 **5. Medical History & Medications**
179 - **‘PastMedicalHistory ‘** Convert spoken history into a concise list.
180 - **‘CurrentMedications ‘** Extract and list.
181 - **‘MedicationAllergies ‘** Ensure clarity (e.g., ‘penicillin ‘ instead of ‘I can‘t take that

one antibiotic ‘).
182

183 **6. Vital Signs**
184 - **Heart Rate, Blood Pressure , Respiratory Rate, SPO2, Temperature , Glucose** Numeric values

only.

100

185 - **GCS Score & Breakdown** Ensure accurate parsing of Eye, Verbal, and Motor scores.
186

187 **7. Assessment & Impressions**
188 - **‘PrimaryImpression ‘** The clinician ‘s primary diagnosis.
189 - **‘PrimarySymptom ‘** The main reported symptom.
190 - **‘OtherSymptoms ‘** List any additional complaints.
191

192 **8. Treatment & Procedures**
193 - **‘Medication ‘, ‘Dosage‘, ‘Route ‘** Extract administered drugs and details.
194 - **‘Procedure ‘** Include any procedures performed.
195 - **‘IVLocation , Size, Attempts , Successful ‘** Record all IV details.
196

197 **9. Transport & Disposition**
198 - **‘CrewDisposition ‘** Capture decision made by the crew (e.g., treated and released ,

transported).
199 - **‘TransportDisposition ‘** Specify transport details.
200 - **‘LevelOfCareProvided ‘** Define level (BLS, ALS, etc.).
201 - **‘TransportReason ‘** Capture the reason for transport.
202 - **‘TransportAgency , TransportUnit ‘** Include agency and vehicle ID.
203

204 **10. Severity Determination**
205 - **‘Severity ‘** Assign one of the following based on patient condition:
206 - ‘Undetermined ‘
207 - ‘Good‘
208 - ‘Fair‘
209 - ‘Serious‘
210 - ‘Critical ‘
211

212 ---
213

214 **Final Output Requirements:**
215 - **Complete JSON Object:** Ensure every field is present, even if empty.
216 - **Flat Structure:** No nested structures unless explicitly needed.
217 - **No Additional Formatting:** Output must be a valid JSON string without extra spaces or

newlines.
218 - **Preserve All Data:** Retain prior records unless explicitly replaced by new input.
219 - **Timestamp:** You should add the timestamp given into the Time field.
220

221 Your task is to process patient data while maintaining compliance with these rules. Follow these
instructions meticulously to ensure high data fidelity and accuracy.

222

223 **MOST IMPORTANT:** RETURN A SINGLE VALID CSV ROW IN THE EXACT ORDER OF COLUMNS GIVEN. NO HEADERS
. NO EXTRA TEXT. NO JSON. NO QUOTES UNLESS INSIDE A FIELD. LEAVE UNMENTIONED FIELDS EMPTY.";

224

225 // AppSettings class
226 // This class is used to store the API keys and region.
227 // It is accessed from appsettings.json, not included in repo.
228 [Serializable]
229 public class AppSettings
230 {
231 public string OpenAIApiKey;
232 public string AzureSubscriptionKey;
233 public string AzureRegion;
234 }
235

236

237 private async void OnDestroy()
238 {
239 if (recognizer != null)
240 {
241 await recognizer.StopContinuousRecognitionAsync();
242 recognizer.Dispose();
243 }
244 }
245

246 public async void StartRecording()
247 {
248 GeneratePatientIdAndTimestamp();

101

249 if (ActivePatient.PatientID != null)
250 {
251 Debug.Log("was null");
252 patientId = ActivePatient.PatientID;
253 }
254 Debug.Log($"Starting recording for patient ID: {ActivePatient.PatientID}");
255

256 json_template = $@"{{""PatientID"":""{patientId}"":""PatientName"":""Age"":""Gender"":""
HomeAddress"":""City"":""County"":""State"":""ZIPCode"":""WeightKg"":""Race"":""
IncidentNumber"":""ServiceRequested"":""OtherAgencies"":""PrimaryRole"":""ResponseMode"":""
EMSShift"":""DispatchCity"":""DispatchState"":""DispatchZIP"":""DispatchCounty"":""SceneType"
":""Category"":""BackInService"":""CrewMembers"":""NumberOfCrew"":""OtherAgencyOnScene"":""
NumberOfPatients"":""PatientContactMade"":""ArrivedOnScene"":""FirstOnScene"":""
StagePriorToContact"":""PrimaryComplaint"":""Duration"":""TimeUnits"":""AlcoholDrugUse"":""
InitialAcuity"":""CardiacArrest"":""PossibleInjury"":""BaseContactMade"":""SignsOfAbuse"":""
5150Hold"":""PastMedicalHistory"":""CurrentMedications"":""MedicationAllergies"":""
AdvanceDirectives"":""HeartRate"":""BloodPressure"":""RespiratoryRate"":""SPO2"":""
Temperature"":""Glucose"":""GCS_Eye"":""GCS_Verbal"":""GCS_Motor"":""GCS_Score"":""
GCS_Qualifier"":""MentalStatus"":""AbdomenExam"":""ChestExam"":""BackSpineExam"":""
SkinAssessment"":""EyeExam_Bilateral"":""EyeExam_Left"":""EyeExam_Right"":""LungExam"":""
ExtremitiesExam"":""PrimaryImpression"":""PrimarySymptom"":""OtherSymptoms"":""SymptomOnset""
:""TypeOfPatient"":""MedTime"":""MedCrewID"":""Medication"":""Dosage"":""MedUnits"":""Route""
:""MedResponse"":""MedComplications"":""ProcTime"":""ProcCrewID"":""Procedure"":""
ProcLocation"":""IVLocation"":""Size"":""Attempts"":""Successful"":""ProcResponse"":""
PatientEvaluationCare"":""CrewDisposition"":""TransportDisposition"":""LevelOfCareProvided"":
""TransferredCareAt"":""FinalPatientAcuity"":""TurnaroundDelay"":""TransportAgency"":""
TransportUnit"":""LevelOfTransport"":""EMSPrimaryCareProvider"":""TransportReason"":""
CrewSignature"":""CrewMember_PPE"":""PPEUsed"":""SuspectedExposure"":""MonitorTime"":""
MonitorEventType"":""Time"":""Severity"":}}";

257 conversation = ""; // Reset conversation
258 medicineConversation = "";
259

260 // Initialize speech recognition if not already initialized
261 if (recognizer == null)
262 {
263 await InitializeSpeechRecognition();
264 }
265

266 await recognizer.StartContinuousRecognitionAsync();
267 Debug.Log("Started recording...");
268 }
269 private async Task InitializeSpeechRecognition()
270 {
271

272 speechConfig = SpeechConfig.FromSubscription(azureKey , region);
273 speechConfig.SpeechRecognitionLanguage = "en-US"; // Change as needed
274

275 // Use the default microphone
276 audioConfig = AudioConfig.FromDefaultMicrophoneInput();
277 recognizer = new SpeechRecognizer(speechConfig , audioConfig);
278

279 // Subscribe to recognition events
280 recognizer.Recognizing += (s, e) =>
281 {
282 Debug.Log($"Recognizing: {e.Result.Text}");
283

284 };
285

286 recognizer.Recognized += (s, e) =>
287 {
288 if (e.Result.Reason == ResultReason.RecognizedSpeech)
289 {
290 Debug.Log($"Final Result: {e.Result.Text}");
291 if (e.Result.Text.ToLower().Contains("medicine") || e.Result.Text.ToLower().

Contains("medication"))
292 {
293 string timestamp = GenerateTimestamp();
294 medicineConversation += $"(\n[{timestamp}] PatientID: {patientId} : {e.Result

102

.Text}) ";
295 }
296

297 conversation += " " + e.Result.Text;
298 Debug.Log($"Conversation: {conversation}");
299 Debug.Log($"Medicine Conversation: {medicineConversation}");
300

301 }
302 else if (e.Result.Reason == ResultReason.NoMatch)
303 {
304 Debug.Log("No speech recognized.");
305 }
306

307 };
308

309 recognizer.Canceled += (s, e) =>
310 {
311 Debug.LogError($"Canceled: {e.Reason}, Error: {e.ErrorDetails}");
312 };
313

314 recognizer.SessionStopped += (s, e) =>
315 {
316 Debug.Log("Speech session stopped.");
317 };
318

319 Debug.Log("Speech recognition initialized...");
320 }
321

322 public async void StopRecording()
323 {
324 await recognizer.StopContinuousRecognitionAsync();
325 Debug.Log("Stopped recording. Final conversation:");
326 Debug.Log(conversation);
327 QueuedText = conversation;
328 QueuedMedicineText = medicineConversation;
329 }
330

331 // LoadConfiguration()
332 // This function loads the configuration from appsettings.json.
333 // You must import this yourself as git will ignore it.
334 // private void LoadConfiguration()
335 // {
336 // string configPath = Path.Combine(Directory.GetParent(Application.dataPath).FullName, "

appsettings.json");
337 // if (File.Exists(configPath))
338 // {
339 // try
340 // {
341 // string jsonContent = File.ReadAllText(configPath);
342 // var config = JsonUtility.FromJson <AppSettings >(jsonContent);
343

344 // openAIKey = config?.OpenAIApiKey;
345 // region = config?.AzureRegion;
346 // azureKey = config?.AzureSubscriptionKey;
347 // }
348 // catch (Exception ex)
349 // {
350 // Debug.LogError($"Error loading configuration: {ex.Message}");
351 // }
352 // }
353 // else
354 // {
355 // Debug.LogError($"appsettings.json not found at: {configPath}");
356 // Debug.LogError($"Please ensure appsettings.json exists in the project root

directory: {Path.GetDirectoryName(configPath)}");
357 // }
358 // }
359

103

360 // GeneratePatientId()
361 // This function generates a Patient ID in the format PAT-YYYYMMDD -HHMMSS-XXXX
362 private string GeneratePatientId()
363 {
364 string datePart = DateTime.Now.ToString("yyyyMMdd");
365 string timePart = DateTime.Now.ToString("HHmmss");
366 string randomPart = Guid.NewGuid().ToString().Substring(0, 4); // Get the first 4

characters of a new GUID
367 return $"PAT-{datePart}-{timePart}-{randomPart}";
368 }
369

370 private string GenerateTimestamp()
371 {
372 // Get current UTC time
373 DateTime utcNow = DateTime.UtcNow;
374 // Convert to Pacific Time (UTC-8 for PST, UTC-7 for PDT)
375 TimeSpan pacificOffset = TimeZoneInfo.Local.GetUtcOffset(DateTime.Now);
376 DateTime pacificTime = utcNow.Add(pacificOffset);
377 return pacificTime.ToString("yyyy-MM-dd HH:mm:ss");
378 }
379

380 public void GeneratePatientIdAndTimestamp()
381 {
382 patientId = GeneratePatientId();
383 timestamp = GenerateTimestamp();
384 Debug.Log($"Generated Patient ID: {patientId}");
385 Debug.Log($"Generated Timestamp: {timestamp}");
386 }
387

388 // When we detect a new recording , we need to process the text.
389 void Update()
390 {
391 // Process any queued text
392 if (QueuedText != null)
393 {
394 string textToProcess = QueuedText;
395 QueuedText = null;
396 StartCoroutine(FetchCurrentDataAndProcessText(textToProcess));
397 }
398

399 if (QueuedMedicineText != null)
400 {
401 string textToProcess = QueuedMedicineText;
402 Debug.Log("MEDICINEtextToProcess: " + textToProcess);
403 QueuedMedicineText = null;
404 StartCoroutine(SendOpenAIRequest(textToProcess , true));
405 }
406 }
407

408 // New method to fetch current data before processing text
409 private IEnumerator FetchCurrentDataAndProcessText(string textToProcess , bool isMedicine =

false)
410 {
411 // Fetch current data for this patient ID
412 string fetchUrl = $"{supabaseUrl}?PatientID=eq.{patientId}";
413 UnityWebRequest fetchRequest = UnityWebRequest.Get(fetchUrl);
414 fetchRequest.SetRequestHeader("apikey", supabaseKey);
415 fetchRequest.SetRequestHeader("Authorization", "Bearer " + supabaseKey);
416

417 yield return fetchRequest.SendWebRequest();
418

419 if (fetchRequest.result == UnityWebRequest.Result.Success)
420 {
421 string response = fetchRequest.downloadHandler.text;
422 // Check if we got any data back (empty array means no existing record)
423 if (response != null && response.Length > 2 && !response.Equals("[]"))
424 {
425 // Remove the array brackets since we expect only one record

104

426 current_data = response.Trim().TrimStart(’[’).TrimEnd(’]’);
427 Debug.Log("Fetched current data: " + current_data);
428 }
429 else
430 {
431 current_data = "{}"; // Set to empty JSON object if no data found
432 Debug.Log("No existing data found for patient ID: " + patientId);
433 }
434 }
435 else
436 {
437 Debug.LogWarning("Failed to fetch existing data: " + fetchRequest.error);
438 current_data = "{}"; // Set to empty JSON object if fetch fails
439 }
440

441 // Now process the text with the updated current_data
442 StartCoroutine(SendOpenAIRequest(textToProcess));
443 }
444

445 // SendOpenAIRequest(string rawText)
446 // Parameters: rawText - the text to be sent to OpenAI.
447 // Returns: None
448 // This function sends the transcribed text to OpenAI and returns the JSON data.
449 private IEnumerator SendOpenAIRequest(string rawText, bool isMedicine = false)
450 {
451 Debug.Log($" Sending to OpenAI: {rawText}");
452 Debug.Log($"Current data being used: {current_data}");
453

454 string escapedSystemPrompt = "";
455 string escapedUserContent = "";
456 string medicationID = "";
457

458 // Properly escape strings for JSON
459 if (isMedicine)
460 {
461 medicationID = Guid.NewGuid().ToString();
462 Debug.Log("Medication true");
463 escapedSystemPrompt = EscapeJsonString(medicinePrompt);
464 escapedUserContent = EscapeJsonString($"Medication ID: {medicationID}\nTranscript: {

rawText}\nEmpty template: {medication_json_template}\nTimestamp: {timestamp}\nPatient ID: {
patientId}");

465 }
466 else
467 {
468 escapedSystemPrompt = EscapeJsonString(gptPrompt);
469 escapedUserContent = EscapeJsonString($"Audio input: {rawText}\nEmpty template: {

json_template}\nCurrent db info: {current_data}\nTimestamp: {timestamp}\nPatient ID: {
patientId}");

470 }
471

472 // Construct JSON payload with properly escaped strings
473 string jsonPayload = @"{
474 ""model"": ""gpt-4o"",
475 ""messages"": [
476 {
477 ""role"": ""system"",
478 ""content"": """ + escapedSystemPrompt + @"""
479 },
480 {
481 ""role"": ""user"",
482 ""content"": """ + escapedUserContent + @"""
483 }
484]
485 }";
486

487 Debug.Log($"JSON payload size: {jsonPayload.Length} bytes");
488 Debug.Log($"JSON Payload preview: {(jsonPayload.Length > 200 ? jsonPayload.Substring(0,

200) + "..." : jsonPayload)}");

105

489

490 byte[] bodyRaw = Encoding.UTF8.GetBytes(jsonPayload);
491 Debug.Log($"Request body size: {bodyRaw.Length} bytes");
492

493 UnityWebRequest request = new UnityWebRequest(openAIURL , "POST");
494 request.uploadHandler = new UploadHandlerRaw(bodyRaw);
495 request.downloadHandler = new DownloadHandlerBuffer();
496 request.SetRequestHeader("Content-Type", "application/json");
497 request.SetRequestHeader("Authorization", "Bearer " + openAIKey);
498

499 // Log request details before sending
500 Debug.Log($"Sending request to URL: {openAIURL}");
501 Debug.Log($"Using API key: {openAIKey.Substring(0, 10)}..."); // Only show first 10 chars

for security
502

503 yield return request.SendWebRequest();
504

505 // Log detailed response information
506 Debug.Log($"Response code: {request.responseCode}");
507

508 if (request.result == UnityWebRequest.Result.Success)
509 {
510 Debug.Log("OpenAI request successful!");
511 string responseText = request.downloadHandler.text;
512

513 string responseTextContent = ExtractMessage(request.downloadHandler.text);
514 responseTextContent = responseTextContent.Replace("\"PatientID\":\"\"", $"\"PatientID

\":\"{patientId}\"");
515 responseTextContent = responseTextContent.Replace("\"Time\":\"\"", $"\"Time\":\"{

timestamp}\"");
516

517 StartCoroutine(SendJsonToSupabase(responseTextContent , isMedicine));
518

519 }
520 else
521 {
522 Debug.LogError($"OpenAI request failed with error: {request.error}");
523 Debug.LogError($"Error details: {request.downloadHandler?.text ?? "No response body"}

");
524

525 // Check for common error causes
526 if (request.responseCode == 401)
527 {
528 Debug.LogError("Authentication error: Check if your OpenAI API key is valid");
529 }
530 else if (request.responseCode == 400)
531 {
532 Debug.LogError("Bad request: The request format might be incorrect or the prompt

might be too long");
533 }
534 else if (request.responseCode == 429)
535 {
536 Debug.LogError("Rate limit exceeded: You might be sending too many requests or

have exceeded your quota");
537 }
538 else if (request.responseCode == 500)
539 {
540 Debug.LogError("Server error: OpenAI’s servers might be experiencing issues");
541 }
542

543 // Try to log the first part of the payload for debugging
544 if (jsonPayload.Length > 500)
545 {
546 Debug.LogError($"First 500 chars of payload: {jsonPayload.Substring(0, 500)}...")

;
547 }
548 }
549 }

106

550

551 // Helper method to properly escape strings for JSON
552 private string EscapeJsonString(string str)
553 {
554 if (string.IsNullOrEmpty(str))
555 return string.Empty;
556

557 // Replace special characters with escape sequences
558 str = str.Replace("\\", "\\\\");
559 str = str.Replace("\"", "\\\"");
560 str = str.Replace("\n", "\\n");
561 str = str.Replace("\r", "\\r");
562 str = str.Replace("\t", "\\t");
563 str = str.Replace("\b", "\\b");
564 str = str.Replace("\f", "\\f");
565

566 return str;
567 }
568

569 // ExtractMessage(string jsonResponse)
570 // Parameters: jsonResponse - the response from OpenAI.
571 // Returns: A string of the JSON data.
572 // This function extracts the JSON data from the response from OpenAI.
573 private string ExtractMessage(string jsonResponse)
574 {
575 OpenAIResponse response = JsonUtility.FromJson <OpenAIResponse >(jsonResponse);
576 return response.choices[0].message.content;
577 }
578

579 [System.Serializable]
580 public class OpenAIResponse
581 {
582 public Choice[] choices;
583 }
584

585 [System.Serializable]
586 public class Choice
587 {
588 public Message message;
589 }
590

591 [System.Serializable]
592 public class Message
593 {
594 public string content;
595 }
596

597 // SendJsonToSupabase(string jsonData)
598 // Parameters: jsonData - the JSON string to be sent to Supabase.
599 // Returns: None
600 // This function sends the provided JSON data to Supabase.
601

602 private IEnumerator SendJsonToSupabase(string jsonData, bool isMedicine = false)
603 {
604 Debug.Log("Current JSON: " + jsonData);
605

606 // First, fetch existing data for this patient
607 string fetchUrl;
608 if (isMedicine)
609 {
610 fetchUrl = $"{supabaseUrlMedication}";
611 }
612 else
613 {
614 fetchUrl = $"{supabaseUrl}?PatientID=eq.{patientId}";
615 }
616 UnityWebRequest fetchRequest = UnityWebRequest.Get(fetchUrl);
617 fetchRequest.SetRequestHeader("apikey", supabaseKey);

107

618 fetchRequest.SetRequestHeader("Authorization", "Bearer " + supabaseKey);
619

620 yield return fetchRequest.SendWebRequest();
621

622 bool rowExists = false;
623

624 Debug.Log("Sending JSON to Supabase...");
625 Debug.Log("Final JSON to send: " + jsonData);
626

627 byte[] bodyRaw = Encoding.UTF8.GetBytes(jsonData);
628

629 // If row exists, use PATCH to update it, otherwise use POST to create a new row
630 string requestMethod = rowExists ? "PATCH" : "POST";
631 string requestUrl;
632 if (isMedicine)
633 {
634 requestUrl = supabaseUrlMedication;
635 }
636 else
637 {
638 requestUrl = rowExists ? $"{supabaseUrl}?PatientID=eq.{patientId}" : supabaseUrl;
639 }
640

641 Debug.Log($"Using {requestMethod} request to {requestUrl}");
642

643 UnityWebRequest updateRequest = new UnityWebRequest(requestUrl , requestMethod);
644 updateRequest.uploadHandler = new UploadHandlerRaw(bodyRaw);
645 updateRequest.downloadHandler = new DownloadHandlerBuffer();
646 updateRequest.SetRequestHeader("Content-Type", "application/json");
647 updateRequest.SetRequestHeader("apikey", supabaseKey);
648 updateRequest.SetRequestHeader("Authorization", "Bearer " + supabaseKey);
649

650 // For both POST and PATCH, we want to return the representation
651 updateRequest.SetRequestHeader("Prefer", "return=representation");
652

653 // For POST specifically , we want to handle duplicates by merging
654 if (requestMethod == "POST")
655 {
656 updateRequest.SetRequestHeader("Prefer", "resolution=merge-duplicates ,return=

representation");
657 }
658

659 yield return updateRequest.SendWebRequest();
660

661 if (updateRequest.result == UnityWebRequest.Result.Success)
662 {
663 Debug.Log($"Successfully {(rowExists ? "updated" : "created")} record in Supabase: "

+ updateRequest.downloadHandler.text);
664 }
665 else
666 {
667 Debug.LogError($"Error {(rowExists ? "updating" : "creating")} record in Supabase: "

+ updateRequest.error);
668 Debug.LogError("Response: " + updateRequest.downloadHandler.text);
669

670 // If PATCH fails, try POST as a fallback
671 if (requestMethod == "PATCH")
672 {
673 Debug.Log("PATCH failed, trying POST as fallback...");
674 yield return StartCoroutine(FallbackPostToSupabase(jsonData));
675 }
676 }
677 }
678

679 // Fallback method to use POST if PATCH fails
680 private IEnumerator FallbackPostToSupabase(string jsonData)
681 {
682 byte[] bodyRaw = Encoding.UTF8.GetBytes(jsonData);

108

683

684 UnityWebRequest request = new UnityWebRequest(supabaseUrl , "POST");
685 request.uploadHandler = new UploadHandlerRaw(bodyRaw);
686 request.downloadHandler = new DownloadHandlerBuffer();
687 request.SetRequestHeader("Content-Type", "application/json");
688 request.SetRequestHeader("apikey", supabaseKey);
689 request.SetRequestHeader("Authorization", "Bearer " + supabaseKey);
690 request.SetRequestHeader("Prefer", "resolution=merge-duplicates ,return=representation");
691

692 yield return request.SendWebRequest();
693

694 if (request.result == UnityWebRequest.Result.Success)
695 {
696 Debug.Log("Fallback POST successful: " + request.downloadHandler.text);
697 }
698 else
699 {
700 Debug.LogError("Fallback POST also failed: " + request.error);
701 Debug.LogError("Response: " + request.downloadHandler.text);
702 }
703 }
704 }

A.13 ClearText.cs

1 using System.Collections.Generic;
2 using System.IO;
3 using UnityEngine;
4 using Newtonsoft.Json;
5

6 public class ClearJsonValues : MonoBehaviour
7 {
8 public string filePath = "Assets/StreamingAssets/patient_data.json"; // Update the path if

needed
9

10 public void ClearValues()
11 {
12 if (File.Exists(filePath))
13 {
14 string json = File.ReadAllText(filePath);
15 Dictionary <string, string> data = JsonConvert.DeserializeObject <Dictionary <string,

string >>(json);
16

17 if (data != null)
18 {
19 foreach (var key in new List<string >(data.Keys))
20 {
21 data[key] = "";
22 }
23

24 string updatedJson = JsonConvert.SerializeObject(data, Formatting.Indented);
25 File.WriteAllText(filePath , updatedJson);
26 Debug.Log("JSON values cleared.");
27 }
28 }
29 else
30 {
31 Debug.LogError("JSON file not found!");
32 }
33 }
34 }

A.14 DynamicChecklist.cs

1 using UnityEngine;
2 using UnityEngine.UI;

109

3 using System.Collections.Generic;
4

5 public class DynamicChecklist : MonoBehaviour
6 {
7 public GameObject scrollContent; // Assign Scroll View’s Content here
8 public Button buttonPrefab; // Assign a Button prefab in the Inspector
9 public Toggle checkboxPrefab; // Assign a Checkbox prefab in the Inspector

10 public Button backButtonPrefab; // Assign a Back Button prefab in the Inspector
11

12 // Sample Data
13 private string[] mainMenuOptions = { "Adult Protocols", "Pediatric Protocols", "Standard

Protocols", "Procedures", "Optional Scope", "Policies" };
14 private Dictionary <string, string[]> subMenuOptions = new Dictionary <string, string[]>
15 {
16 { "Adult Protocols", new[] { "A01. Abdominal Emergencies", "A02. Seizure", "A03.

Hypoglycemia", "A04. Sepsis", "A05. Bradycardia", "A06. Burns", "A07. Cardiac Arrest", "A08.
Chest Pain-Suspected Cardiac Ischemia", "A09. Environmental Emergencies", "A10. Shock", "A11.
Respiratory Distress", "A12. Allergic Reaction / Anaphylaxis", "A13. Stroke", "A14.
Tachycardia with Pulses", "A15. Poisoning and Overdose", "A16. Trauma Care", "A18.
Gynecological and Obstetrical Emergencies", "A19. Crush Injury Syndrome", "A20. Behavioral
Emergency - Combative" } },

17 { "Pediatric Protocols", new[] { "Pediatric Procedure 1", "Pediatric Procedure 2" } },
18 { "Standard Protocols", new[] { "Standard Procedure 1", "Standard Procedure 2", "Standard

Procedure 3" } },
19 { "Procedures", new[] { "Procedure 1", "Procedure 2", "Procedure 3", "Procedure 4" } },
20 { "Optional Scope", new[] { "Scope Option 1", "Scope Option 2" } },
21 { "Policies", new[] { "Policy 1", "Policy 2", "Policy 3" } }
22 };
23

24 private List<GameObject > currentUIElements = new List<GameObject >();
25 private Stack<System.Action> navigationStack = new Stack<System.Action >();
26

27 // Dictionary to save checkbox states
28 private Dictionary <string, bool> checkboxStates = new Dictionary <string, bool>();
29

30 private void Start()
31 {
32 // Generate main menu buttons on start
33 GenerateButtons(mainMenuOptions , OnMainMenuButtonClick);
34 }
35

36 private void GenerateButtons(string[] options, System.Action<string> onClickCallback)
37 {
38 ClearCurrentUI(); // Clears any previously generated buttons
39

40 foreach (string option in options)
41 {
42 // Instantiate a new button from the prefab
43 Button newButton = Instantiate(buttonPrefab , scrollContent.transform);
44 TMPro.TextMeshProUGUI buttonText = newButton.GetComponentInChildren <TMPro.

TextMeshProUGUI >();
45

46 // Set the text of the button to the current option
47 if (buttonText != null)
48 {
49 buttonText.text = option; // This should correctly set the button text
50 }
51 else
52 {
53 Debug.LogError("Button prefab is missing a Text component! Please ensure the

prefab has a Text component.");
54 }
55

56 // Add an onClick listener to the button
57 newButton.onClick.AddListener(() => onClickCallback(option));
58

59 // Keep track of the newly created UI element
60 currentUIElements.Add(newButton.gameObject);

110

61 }
62

63 // Add a back button if there is a previous menu
64 if (navigationStack.Count > 0)
65 {
66 AddBackButton();
67 }
68 }
69

70 private void GenerateCheckboxes(string[] options)
71 {
72 ClearCurrentUI();
73 foreach (var option in options)
74 {
75 Toggle newCheckbox = Instantiate(checkboxPrefab , scrollContent.transform);
76 Text checkboxText = newCheckbox.GetComponentInChildren <Text>();
77 if (checkboxText != null)
78 {
79 checkboxText.text = option; // This should correctly set the checkbox text
80 }
81 else
82 {
83 Debug.LogError("Checkbox prefab is missing a Text component! Please ensure the

prefab has a Text component.");
84 }
85

86 // Restore checkbox state if it was previously saved
87 if (checkboxStates.ContainsKey(option))
88 {
89 newCheckbox.isOn = checkboxStates[option];
90 }
91 else
92 {
93 newCheckbox.isOn = false; // Default to unchecked
94 }
95

96 // Save checkbox state when its value changes
97 newCheckbox.onValueChanged.AddListener((value) =>
98 {
99 checkboxStates[option] = value;

100 });
101

102 currentUIElements.Add(newCheckbox.gameObject);
103 }
104

105 // Add a back button if there is a previous menu
106 if (navigationStack.Count > 0)
107 {
108 AddBackButton();
109 }
110 }
111

112 private void AddBackButton()
113 {
114 if (backButtonPrefab != null)
115 {
116 Button backButton = Instantiate(backButtonPrefab , scrollContent.transform);
117 Text backButtonText = backButton.GetComponentInChildren <Text>();
118 if (backButtonText != null)
119 {
120 backButtonText.text = "Back"; // Ensure the Back button text is correctly set
121 }
122 backButton.onClick.AddListener(OnBackButtonClick);
123 currentUIElements.Add(backButton.gameObject);
124 }
125 else
126 {
127 Debug.LogError("Back Button Prefab is missing. Please assign a back button prefab.");

111

128 }
129 }
130

131 private void OnMainMenuButtonClick(string selectedOption)
132 {
133 if (subMenuOptions.ContainsKey(selectedOption))
134 {
135 // Save the current menu generator function to the navigation stack (main menu button

click)
136 navigationStack.Push(() => GenerateButtons(mainMenuOptions , OnMainMenuButtonClick));
137

138 // Generate the submenu
139 GenerateButtons(subMenuOptions[selectedOption], OnSubMenuButtonClick);
140 }
141 else
142 {
143 Debug.LogError($"Submenu for ’{selectedOption}’ not found!");
144 }
145 }
146

147 private void OnSubMenuButtonClick(string selectedSubOption)
148 {
149 // Save the current submenu generator function to the stack
150 string[] checkboxOptions = new[] { $"{selectedSubOption} Task 1", $"{selectedSubOption}

Task 2", $"{selectedSubOption} Task 3" };
151 navigationStack.Push(() => GenerateButtons(subMenuOptions[selectedSubOption],

OnSubMenuButtonClick));
152

153 // Generate checkboxes for the selected procedure or protocol
154 GenerateCheckboxes(checkboxOptions);
155 }
156

157 private void OnBackButtonClick()
158 {
159 if (navigationStack.Count > 0)
160 {
161 // Get the last menu generator function and invoke it (this should take us to the

previous menu)
162 var previousMenu = navigationStack.Pop();
163 previousMenu.Invoke();
164 }
165 else
166 {
167 Debug.LogError("No previous menu in the navigation stack!");
168 }
169 }
170

171

172 private void ClearCurrentUI()
173 {
174 foreach (var element in currentUIElements)
175 {
176 Destroy(element);
177 }
178 currentUIElements.Clear();
179 }
180 }

A.15 FetchAPILoop.cs

1 // While record button toggle is active, fetch data from the server every 10 seconds.
2

3 using UnityEngine;
4 using System.Collections;
5 using MixedReality.Toolkit.UX;
6

7 public class FetchAPILoop : MonoBehaviour

112

8 {
9 public PressableButton recButton;

10 private Coroutine fetchCoroutine;
11 private bool isFetching = false;
12 public SupabaseAPI supabaseAPI;
13

14 void Start()
15 {
16 fetchCoroutine = StartCoroutine(PollServerLoop());
17 }
18

19 private IEnumerator PollServerLoop()
20 {
21 while (true)
22 {
23 yield return new WaitForSeconds(10f);
24 FetchServer();
25 Debug.Log("Fetching server data...");
26 }
27 }
28

29 private void FetchServer()
30 {
31 supabaseAPI.GetUserInfo("");
32 if (string.IsNullOrEmpty(ActivePatient.PatientID))
33 {
34 Debug.LogWarning("No patient selected.");
35 return;
36 }
37 supabaseAPI.GetUserInfo(ActivePatient.PatientID);
38 }
39 }

A.16 FlashDot.cs

1 using System.Collections;
2 using UnityEngine;
3

4 public class FlashingObject : MonoBehaviour
5 {
6 public GameObject targetObject;
7 public float flashInterval = 0.5f; // Adjust the speed of flashing
8 private bool isFlashing = false;
9 private Coroutine flashCoroutine;

10

11 void Update()
12 {
13 if (Input.GetKeyDown(KeyCode.N) && !isFlashing)
14 {
15 isFlashing = true;
16 flashCoroutine = StartCoroutine(FlashObject());
17 }
18 else if (Input.GetKeyDown(KeyCode.M) && isFlashing)
19 {
20 isFlashing = false;
21 StopCoroutine(flashCoroutine);
22 targetObject.SetActive(true);
23 }
24 }
25

26 private IEnumerator FlashObject()
27 {
28 while (isFlashing)
29 {
30 targetObject.SetActive(!targetObject.activeSelf);
31 yield return new WaitForSeconds(flashInterval);
32 }

113

33 }
34 }

A.17 IMixedRealityPointerHandler.cs

1 internal interface IMixedRealityPointerHandler
2 {
3 }

A.18 JsonRender.cs

1 // Display a single user’s JSON data, while ignoring empty categories
2

3 using System.Collections.Generic;
4 using UnityEngine;
5 using UnityEngine.UI;
6 using Newtonsoft.Json.Linq;
7 using System.IO;
8 using TMPro;
9

10 public class JsonRender : MonoBehaviour
11 {
12 public TMP_Text[] displaySections;
13

14 void Start()
15 {
16 // Start with empty text displays
17 //displayText1.text = "";
18 //displayText2.text = "";
19 }
20

21 public void DisplayPatientData(JObject jsonObject)
22 {
23 List<string> formattedLines = new List<string >();
24

25 foreach (var property in jsonObject.Properties())
26 {
27 if (!string.IsNullOrEmpty(property.Value?.ToString()))
28 {
29 string fieldName = System.Text.RegularExpressions.Regex.Replace(
30 property.Name, "_", " ").ToLower();
31 fieldName = System.Globalization.CultureInfo.CurrentCulture.TextInfo
32 .ToTitleCase(fieldName);
33

34 formattedLines.Add($"{fieldName}: {property.Value}");
35 }
36 }
37

38 int linesPerSection = formattedLines.Count > 0
39 ? Mathf.CeilToInt((float)formattedLines.Count / 8f)
40 : 1;
41

42 for (int i = 0; i < displaySections.Length; i++)
43 {
44 if (i < 8 && i < displaySections.Length)
45 {
46 if (formattedLines.Count > 0)
47 {
48 int start = i * linesPerSection;
49 int count = Mathf.Min(linesPerSection , formattedLines.Count - start);
50

51 if (start < formattedLines.Count)
52 {
53 displaySections[i].text = string.Join("\n", formattedLines.GetRange(start

, count));
54 }

114

55 else
56 {
57 displaySections[i].text = ""; // Clear unused sections
58 }
59 }
60 else
61 {
62 displaySections[i].text = "";
63 }
64 }
65 }
66 }
67

68 /*
69 void CheckForJsonUpdates()
70 {
71 if (string.IsNullOrEmpty(jsonFileName)) return;
72

73 string jsonPath = Path.Combine(folderPath , jsonFileName);
74

75 if (File.Exists(jsonPath))
76 {
77 string newJsonText = File.ReadAllText(jsonPath);
78 if (newJsonText != lastJsonText)
79 {
80 lastJsonText = newJsonText;
81 DisplayPatientData(newJsonText);
82 }
83 }
84 }
85

86 public void SetJsonFile(string newFileName)
87 {
88 jsonFileName = newFileName;
89 LoadAndDisplayJsonData();
90 }
91

92 void Update()
93 {
94 timeSinceLastUpdate += Time.deltaTime;
95 if (timeSinceLastUpdate >= updateInterval)
96 {
97 CheckForJsonUpdates();
98 timeSinceLastUpdate = 0f;
99 }

100 }
101 */
102 }

A.19 MenuManager.cs

1 using UnityEngine;
2 using UnityEngine.UI;
3 using System.Collections.Generic;
4

5 public class MenuManager : MonoBehaviour
6 {
7 public List<RawImage> menuImages = new List<RawImage >(); // Ensure the list is initialized
8 public List<GameObject > selectorMenu = new List<GameObject >(); // Ensure the list is

initialized
9

10 void Start()
11 {
12 // Hide all images by default
13 foreach (RawImage image in menuImages)
14 {
15 image.gameObject.SetActive(false);

115

16 }
17

18 // Hide all selectors by default
19 foreach (GameObject selector in selectorMenu)
20 {
21 selector.SetActive(false);
22 }
23 }
24

25 public void ShowImage(RawImage selectedImage)
26 {
27 foreach (RawImage image in menuImages)
28 {
29 image.gameObject.SetActive(image == selectedImage);
30 }
31 }
32

33 public void ShowSelector(GameObject selectedSelector)
34 {
35

36

37 foreach (GameObject selector in selectorMenu)
38 {
39 selector.SetActive(selector == selectedSelector);
40 }
41 }
42 }

A.20 NewPatient.cs

1 // Enables user to start a new patient for recording
2

3 using UnityEngine;
4 using Newtonsoft.Json.Linq;
5

6 public class NewPatient : MonoBehaviour
7 {
8 public JsonRender jsonRender;
9 private void Start()

10 {
11 OnNewPatientButtonClicked();
12 }
13

14 // Called by CreateNewPatientButton
15 public void OnNewPatientButtonClicked()
16 {
17 ActivePatient.PatientID = null;
18 ActivePatient.PatientJSON = new JObject();
19 // Clear the JSON data display on slate to signify a new patient
20 jsonRender.DisplayPatientData(ActivePatient.PatientJSON);
21

22 Debug.Log("Changed active patient.");
23 }
24 }

A.21 PatientScroll.cs

1 using TMPro;
2 using UnityEngine;
3

4 public class PatientScroll : MonoBehaviour
5 {
6 public GameObject page1;
7 public GameObject page2;
8

9

116

10

11 public void ShowPage1()
12 {
13 if (page1 != null)
14 {
15 page1.gameObject.SetActive(true);
16

17 }
18 if (page2 != null)
19 {
20 page2.gameObject.SetActive(false);
21 }
22 }
23

24 // Function to activate text object 2, deactivate text object 1, and set font size
25 public void ShowPage2()
26 {
27 if (page1 != null)
28 {
29 page1.gameObject.SetActive(false);
30 }
31 if (page2 != null)
32 {
33 page2.gameObject.SetActive(true);
34 }
35 }
36 }

A.22 PatientsRender.cs

1 // Render list of patients for PatientList section of slate. The list is split into two pages of
5 buttons.

2 // Each button can be clicked to display the patient’s data in the PatientData section of the
slate using JsonRender.cs

3

4 using System.Collections.Generic;
5 using TMPro;
6 using Newtonsoft.Json.Linq;
7 using UnityEngine;
8 // using Microsoft.MixedReality.Toolkit;
9 using System.Linq;

10 using MixedReality.Toolkit.UX;
11

12 public class PatientsRender : MonoBehaviour
13 {
14 public GameObject[] buttons;
15 private JArray jsonArray;
16

17 public JsonRender jsonRender;
18

19 public void DisplayPatients(string jsonString)
20 {
21 if (string.IsNullOrEmpty(jsonString))
22 {
23 Debug.LogError("DisplayPatients: jsonString is null or empty.");
24 return;
25 }
26

27 jsonArray = JArray.Parse(jsonString);
28

29 if (buttons == null || buttons.Length == 0)
30 {
31 Debug.LogError("DisplayPatients: buttons array is null or empty.");
32 return;
33 }
34

35 int loopCount = Mathf.Min(buttons.Length, jsonArray.Count); // Ensure we don’t exceed the

117

smaller size
36

37 for (int i = 0; i < loopCount; i++)
38 {
39 if (buttons[i] == null)
40 {
41 Debug.LogError($"DisplayPatients: Button GameObject at index {i} is null.");
42 continue;
43 }
44

45 var pressableButton = buttons[i].GetComponent <PressableButton >();
46 if (pressableButton == null)
47 {
48 Debug.LogError($"DisplayPatients: MRTK PressableButton component not found on

GameObject ’{buttons[i].name}’ at index {i}.");
49 continue;
50 }
51

52 int capturedIndex = i;
53 JObject patient = (JObject)jsonArray[capturedIndex];
54

55 // Update button text with patient name
56 JToken nameToken;
57 if (patient.TryGetValue("PatientName", out nameToken))
58 {
59 string patientName = nameToken.ToString();
60

61 TMP_Text tmpText = buttons[i].GetComponentInChildren <TMP_Text >();
62 if (tmpText != null)
63 {
64 tmpText.text = patientName;
65 }
66 else
67 {
68 Debug.LogWarning($"DisplayPatients: No TMP_Text found in button ’{buttons[i].

name}’ at index {i}.");
69 }
70 }
71 else
72 {
73 Debug.LogWarning($"DisplayPatients: ’PatientName ’ not found in JSON at index {i}.

");
74 }
75

76 // Set up click event
77 pressableButton.OnClicked.RemoveAllListeners();
78 pressableButton.OnClicked.AddListener(() => HandlePatientClick(patient));
79 }
80

81 }
82

83 void HandlePatientClick(JObject patient)
84 {
85 string patientId = patient["PatientID"]?.ToString();
86 if (!string.IsNullOrEmpty(patientId))
87 {
88 ActivePatient.PatientID = patientId;
89 ActivePatient.PatientJSON = patient;
90 Debug.Log($"Selected PatientID: {patientId}");
91 }
92 else
93 {
94 Debug.LogWarning("HandlePatientClick: PatientID not found in JSON object.");
95 }
96 jsonRender.DisplayPatientData(ActivePatient.PatientJSON);
97 }
98 }

118

A.23 SlateFollower.cs

1 using UnityEngine;
2

3 public class SlateFollower : MonoBehaviour
4 {
5 public float followSpeed = 3.0f; // Speed of following user position
6 public float distanceFromUser = 1.5f; // Distance from the user
7 public float rotationSpeed = 5.0f; // Speed at which the slate rotates to face user
8

9 private Transform userHead;
10 private Vector3 offsetFromUser; // Fixed offset from user position
11 private bool isBeingMoved = false;
12 private bool hasBeenMovedByUser = false;
13

14 void Start()
15 {
16 userHead = Camera.main.transform;
17 SetInitialPosition();
18 }
19

20 void Update()
21 {
22 if (!isBeingMoved && !hasBeenMovedByUser)
23 {
24 FollowUserPosition();
25 }
26 // Always face the user regardless of movement state
27 FaceUser();
28 }
29

30 void SetInitialPosition()
31 {
32 if (userHead != null)
33 {
34 // Set initial position in front of user
35 transform.position = userHead.position + Vector3.forward * distanceFromUser;
36 // Store the offset from user position
37 offsetFromUser = transform.position - userHead.position;
38 // Initial rotation to face user
39 FaceUser();
40 }
41 }
42

43 void FollowUserPosition()
44 {
45 if (userHead != null)
46 {
47 // Update position based on user position only, maintaining the same offset
48 Vector3 targetPosition = userHead.position + offsetFromUser;
49 transform.position = Vector3.Lerp(transform.position, targetPosition , Time.deltaTime

* followSpeed);
50 }
51 }
52

53 void FaceUser()
54 {
55 if (userHead != null)
56 {
57 // Calculate direction to user
58 Vector3 directionToUser = userHead.position - transform.position;
59 // Create rotation to face user
60 Quaternion targetRotation = Quaternion.LookRotation(-directionToUser);
61 // Smoothly rotate towards user
62 transform.rotation = Quaternion.Slerp(transform.rotation, targetRotation , Time.

deltaTime * rotationSpeed);
63 }

119

64 }
65

66 public void StartMoving()
67 {
68 isBeingMoved = true;
69 }
70

71 public void StopMoving()
72 {
73 isBeingMoved = false;
74 hasBeenMovedByUser = true;
75 // Update the offset when user manually places the slate
76 offsetFromUser = transform.position - userHead.position;
77 }
78

79 public void ResetToGaze()
80 {
81 hasBeenMovedByUser = false;
82 SetInitialPosition();
83 }
84 }

A.24 SlateResetButton.cs

1 using UnityEngine;
2

3 public class SlateResetButton : MonoBehaviour
4 {
5 private Vector3 defaultPosition;
6 private Quaternion defaultRotation;
7 private Vector3 defaultScale;
8 private SlateFollower slateFollower;
9 private Transform slateTransform;

10

11 void Start()
12 {
13 // Find the top-level Slate object (not just the button’s direct parent)
14 slateTransform = transform.parent;
15

16 if (slateTransform == null)
17 {
18 Debug.LogError("SlateResetButton: No Slate parent found! Make sure this button is a

child of the Slate.");
19 return;
20 }
21

22 // Store the exact initial position , rotation , and scale of the Slate
23 defaultPosition = slateTransform.position;
24 defaultRotation = slateTransform.rotation;
25 defaultScale = slateTransform.localScale;
26

27 // Get reference to the SlateFollower script
28 slateFollower = slateTransform.GetComponent <SlateFollower >();
29 }
30

31 public void ResetSlate()
32 {
33 if (slateTransform != null)
34 {
35 // **Reset position , rotation , and scale to the original values**
36 slateTransform.position = defaultPosition;
37 slateTransform.rotation = defaultRotation;
38 slateTransform.localScale = defaultScale;
39

40 Debug.Log("Slate Reset: Position, Rotation, and Scale restored.");
41

42 // **Reset SlateFollower if it exists**

120

43 if (slateFollower != null)
44 {
45 slateFollower.ResetToGaze();
46 Debug.Log("SlateFollower Reset: Gaze-following restored.");
47 }
48 }
49 else
50 {
51 Debug.LogError("SlateResetButton: No Slate reference found!");
52 }
53 }
54 }

A.25 SlateVisibilityToggle.cs

1 using UnityEngine;
2

3 public class SlateVisibilityToggle : MonoBehaviour
4 {
5 private bool isSlateHidden = false;
6

7 public void ToggleSlateVisibility()
8 {
9 // Iterate through all child objects of the Slate except the button itself

10 foreach (Transform child in transform.parent)
11 {
12 if (child != transform)
13 {
14 child.gameObject.SetActive(isSlateHidden);
15 }
16 }
17 isSlateHidden = !isSlateHidden;
18 }
19 }

A.26 SupabaseAPI.cs

1 // Used with PatientsRender.cs and JsonRender.cs to retrieve and display patient data
2

3 using UnityEngine;
4 using UnityEngine.Networking;
5 using System.Collections;
6 using Newtonsoft.Json.Linq;
7 using System.Text.Json.Nodes;
8 using Microsoft.CognitiveServices.Speech.Transcription;
9

10 public class SupabaseAPI : MonoBehaviour
11 {
12 private const string SUPABASE_URL = "https://yuwrsuaqhbbfxqlrybgg.supabase.co/rest/v1/

PatientData";
13 private const string SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Inl1d3JzdWFxaGJiZnhxbHJ5YmdnIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0MDA3NTk0NywiZXhwIjoyMDU1NjUxOTQ3fQ
.oDOmFPwxbq9FosgsJb4YPs3xwVTPdNL4ihNlw3oZwTk";

14 public JsonRender jsonRender;
15 public PatientsRender PatientsRender;
16 JArray jsonArray;
17

18 // Fills patientData with the data from the API on start
19 private void Start()
20 {
21 GetUserInfo("");
22 }
23

24 public void GetUserInfo(string userId = "")
25 {
26 StartCoroutine(FetchUserInfo(userId));

121

27 }
28

29 IEnumerator FetchUserInfo(string userId)
30 {
31 string endpoint;
32 bool isUserIdEmpty = string.IsNullOrEmpty(userId);
33

34 // Set the endpoint based on whether looking for a single patient (for JSON update) or
list of patients

35 if (isUserIdEmpty)
36 {
37 endpoint = $"{SUPABASE_URL}?order=PatientID.desc&limit=10";
38 }
39 else
40 {
41 endpoint = $"{SUPABASE_URL}?PatientID=eq.{userId}";
42 }
43

44 UnityWebRequest request = UnityWebRequest.Get(endpoint);
45 request.SetRequestHeader("apikey", SUPABASE_KEY);
46 request.SetRequestHeader("Authorization", $"Bearer {SUPABASE_KEY}");
47 request.SetRequestHeader("Content-Type", "application/json");
48

49 yield return request.SendWebRequest();
50

51 // Depending on type of request, call corresponding script to display that info
accordingly

52 if (request.result == UnityWebRequest.Result.Success)
53 {
54 Debug.Log($"Successful Fetching User Data: {request.downloadHandler.text}");
55 if (isUserIdEmpty)
56 {
57 Debug.Log("Fetching all patients");
58 PatientsRender.DisplayPatients(request.downloadHandler.text);
59 }
60 else
61 {
62 Debug.Log($"Fetching user with ID: {userId}");
63 jsonArray = JArray.Parse(request.downloadHandler.text);
64 JObject jsonObject = jsonArray[0] as JObject;
65 if (jsonObject != null)
66 {
67 jsonRender.DisplayPatientData(jsonObject);
68 }
69 else
70 {
71 Debug.LogError("Failed to parse JSON object.");
72 }
73 }
74 }
75 else
76 {
77 Debug.LogError($"Error Fetching User Data: {request.error}");
78 }
79 }
80 }

A.27 TextResize.cs

1 using TMPro;
2 using UnityEngine;
3

4 public class TextResize : MonoBehaviour
5 {
6 public TMP_Text textObject; // Reference to the TextMeshPro object
7 public float sizeStep = 2f; // Step size for font change
8 public float minSize = 10f;

122

9 public float maxSize = 100f;
10

11 // Function to increase text size
12 public void IncreaseTextSize()
13 {
14 if (textObject != null && textObject.fontSize < maxSize)
15 {
16 textObject.fontSize += sizeStep;
17 }
18 }
19

20 // Function to decrease text size
21 public void DecreaseTextSize()
22 {
23 if (textObject != null && textObject.fontSize > minSize)
24 {
25 textObject.fontSize -= sizeStep;
26 }
27 }
28 }

A.28 TextToggle.cs

1 using UnityEngine;
2 using TMPro;
3

4 public class TextToggle : MonoBehaviour
5 {
6 public TMP_Text[] displayTexts; // Assign all 8 text objects in the Inspector
7 private int currentIndex = 0;
8 private float defaultFontSize = 20f;
9

10 void Start()
11 {
12 // Make sure only the first is visible at start
13 SetActiveText(currentIndex);
14 }
15

16 // Activate text at currentIndex , deactivate all others
17 private void SetActiveText(int index)
18 {
19 for (int i = 0; i < displayTexts.Length; i++)
20 {
21 if (displayTexts[i] != null)
22 {
23 displayTexts[i].gameObject.SetActive(i == index);
24 if (i == index)
25 {
26 displayTexts[i].fontSize = defaultFontSize;
27 }
28 }
29 }
30 }
31

32 // Go to the next text display (looping)
33 public void ShowNextText()
34 {
35 currentIndex = (currentIndex + 1) % displayTexts.Length;
36 SetActiveText(currentIndex);
37 }
38

39 // Go to the previous text display (looping)
40 public void ShowPreviousText()
41 {
42 currentIndex = (currentIndex - 1 + displayTexts.Length) % displayTexts.Length;
43 SetActiveText(currentIndex);
44 }

123

45 }

A.29 ToggleGameObjects.cs

1 using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class ToggleGameObjects : MonoBehaviour
6 {
7 public GameObject objectToHide;
8 public GameObject objectToShow;
9

10 public void ToggleObjects() // Ensure it’s public and has no parameters
11 {
12 if (objectToHide != null) objectToHide.SetActive(false);
13 if (objectToShow != null) objectToShow.SetActive(true);
14 }
15 }

124

Appendix B

Unity Structure

B.1 Checklist Menu

Figure B.1: Structure of the CHECKLIST MENU Game Object, with children menu objects and manager.

B.1.1 Main Menu

Figure B.2: Structure of the MAIN MENU Game Object, containing a list of buttons to navigate to other submenus.
It also contains child objects defined by MRTK3’s UI Components.

125

Figure B.3: An in-depth breakdown of the main menu’s list of buttons, further showcasing the content which comprises
a button Game Object.

Figure B.4: Inspector view for a button Game Object, showcasing the several MRTK3 scripts utilized to provide
intractability, as well as the functions which are called upon being activated.

126

B.1.2 Protocols

Figure B.5: Structure of a PROTOCOL Game Object, containing PDFs provided by the County, buttons, and pages.

127

